You have been redirected to your local version of the requested page

Best practice for separation columns in ion chromatography (IC) – Part 3

Mar 21, 2022

Article

This article is Part 3 of a series.

This is the third and final post in our series providing you with tips and tricks on the proper use of ion chromatography columns. In the first part, we mostly discussed the standard operation conditions as well as operational limits for columns, while in the second post, we focused on application related topics and what elution parameters can be changed to modify the separation performance. In the conclusion of this series we will take a closer look at the ways to assess the column performance during its lifetime and offer some troubleshooting tips which can help in fixing issues that may appear. 


Click on a topic below to go directly to each section:

Essential column parameters

Let’s begin by looking at the main parameters that can be used to judge the column performance. Most of these reference values can be extracted from the certificate of analysis. The separation column certificates can be found in the Metrohm Certificate Finder. Reproducing the certificate chromatogram periodically to verify the column performance can be helpful to detect changes in performance early and to avoid irreversible damage of the column.
 

Metrohm Certificate Finder


Below, we will consider the most important parameters one by one.

Retention time and column capacity

The retention time of the individual analytes is a good measure of the column selectivity and capacity. When the retention times of the analytes do not match the retention times of the certificate, there are many possible reasons for this behavior.

Possibly, the eluent composition is wrong, e.g., because the eluent components are not present in the correct concentrations. In case the eluent strength is too high, the retention times will be reduced. This phenomenon usually occurs for all ions simultaneously and shifts all the peaks closer together. Thereby, the multivalent ions are accelerated to a stronger extent than the monovalent ions. This issue can be fixed by preparing a fresh eluent with the correct composition.

The eluent may not be fresh or not sufficiently protected from the surrounding atmosphere, e.g., with a CO2 adsorber. Carbon dioxide from the ambient air can change the eluent composition (i.e., strength, pH, etc.) over time and this will affect the retention times of the analytes. Weak hydroxide eluents are particularly affected by this issue, since the elution strength of carbonate ions is much stronger than the one of hydroxide ions, leading to strong shifts in retention times. Therefore, multivalent ions are more affected by this than monovalent ones. This issue can be fixed by preparing a fresh eluent and by using a CO2 adsorber. When working with hydroxide eluents, it is also important to verify the status of the hydroxide stock solution as it can absorb CO2 from the air. Figure 1 shows the effect of CO2 uptake from the air on the retention times of common anions.