You have been redirected to your local version of the requested page

Forewarned is Forearmed: Error and risk minimization in process analysis – Part 3

Aug 31, 2020

Article

This article is Part 3 of a series.

In the course of life, each of us learns to trust our gut feelings or our experiences to avoid situations that seem dangerous or risky. You quite literally sense potential dangers with an uneasy feeling. Who hasn’t painfully learned that touching a hot stove top isn’t a good idea? Or who voluntarily goes outside during a tornado?

2020/08/31/pat-advantages-part-3/_2

While humans can rely on their intuition and learned patterns to avoid dangers or use protective strategies, this is far more complicated with electronic systems or machines. All components of a system must be in a permanently safe state. Failures and malfunctions of individual components can have devastating consequences for production processes and the safety of the operators.

An example of this is the Seveso disaster in 1976, in which highly toxic dioxin TCDD escaped as a result of an uncontrolled reaction, and sustainably poisoned flora and fauna. With regard to other major chemical accidents, the European Seveso III Directive then came into force in 2012 to control major accident hazards to prevent major accidents.

Recognize, master, and avoid errors

Process engineering systems that are operated continuously contain countless components that can wear out or fail during their life cycle. However, if the measuring, control, or regulating circuit is affected, failures can cause immense damage. Under no circumstances should humans nor the environment be exposed to any kind of danger. For this reason, the functional safety of the components must be guaranteed, and their risk and hazard potential must be analyzed in detail.

The service life of mechanical components can be evaluated by observing mechanical wear and tear. However, the aging behavior of electronic components is difficult to assess. A unit of measure that makes risk reduction and thus functional safety quantifiable is the so-called «Safety Integrity Level» (SIL). 
 

The following procedure is followed:

  1.   Risk analysis
  2.   Realization of risk reduction
  3.   Evidence that the realized risk reduction corresponds at least to the required risk reduction