Zostałaś(eś) przekierowany do lokalnej wersji strony

Polyethylene terephthalate (PET): A brief introduction

PET is a very common plastic, mostly encountered in our lives as PET bottles and as a food packaging material. In this article you will learn how NIR spectroscopy can improve the efficiency of your PET analysis at different steps along the production cycle. Before getting into this, let’s introduce some background information about PET.

Polyethylene terephthalate (PET)

Polyethylene terephthalate (PET) is a general-purpose thermoplastic polymer which belongs to the polyester family. Polyester resins are known for their excellent combination of properties such as mechanical, thermal, and chemical resistance as well as dimensional stability.

2021/06/14/nirs-qc-polymers-part-3/2
Figure 1. Molecular structure of linear PET.

PET is one of the most recycled thermoplastics and has the number 1 as its recycling symbol. Recycled PET can be converted into fibers, fabrics, sheets for packaging and for manufacturing automotive parts. PET is a highly flexible, colorless, and semi-crystalline resin in its natural state. Depending upon how it is processed, it can be semi-rigid to rigid. It exhibits good resistance to impact, moisture, alcohols, and solvents.

The chemical formula of PET is (C10H8O4)n and its molecular structure is shown in Figure 1.

2021/06/14/nirs-qc-polymers-part-3/3
Figure 2. Molecular structure of isophthalic acid.

In addition to linear PET, there is also a branched version of the polymer. Branched PET is typically mixed with a small percent of isophthalic acid (C8H₆O4), because purified isophthalic acid (PIA, Figure 2) reduces the crystallinity of PET, serving to improve its clarity and increase the productivity of bottle manufacturing processes.

Diethylene glycol (DEG) as an additive also reduces the rate of crystallization of PET when crystallizing from the melt, isothermally and dynamically.

The key properties and advantages of PET resin are numerous:

  • very strong and lightweight, and therefore easy and efficient to transport
  • has good gas (oxygen, carbon dioxide) and moisture barrier properties, meaning low gas permeability (particularly against CO2)
  • exhibits excellent electrical insulating properties
  • broad range of use temperature (-60 to 130 °C)
  • high heat distortion temperature (HDT)
  • suitable for transparent application purposes
  • practically shatter-resistant – PET does not break or fracture and is used to replace glass in some applications
  • recyclable material
  • transparent to microwave radiation
  • very resistant to alcohols, aliphatic hydrocarbons, oils, greases, and diluted acids
  • moderately resistant to diluted alkalis, aromatic and halogenated hydrocarbons
  • PET is approved as safe for contact with foods and beverages by the FDA, Health Canada, EFSA, and other health agencies

What is polyethylene terephthalate (PET) used to make?

Polyethylene terephthalate is used in several types of packaging applications as shown in Figure 3. Due to its strength, light weight, and many other attractive properties, PET excels as a food packaging material.

Figure 3. PET is an ideal choice for many food packaging applications due to its strength to weight ratio.
2021/06/14/nirs-qc-polymers-part-3/5
Figure 4. PET makes up a significant portion of produced polyester fabric.

Polyester makes up nearly two-thirds of synthetic fibers produced. There are many different types of polyester, but the type most often produced for use in textiles is PET. When used in a fabric, it is most often referred to as «polyester» or «poly» (Figure 4). This material costs very little to produce, which is the primary driver for its use in the textile industry.

Approximately 60% of the global PET production is used to make fibers for textiles while about 30% is used to make bottles for various purposes. Its ability to be recycled is especially attractive for manufacturers looking to save costs and operate in a greener manner.

2021/06/14/nirs-qc-polymers-part-3/6
Figure 5. PET is often used in the manufacturing of various automotive parts.

In the electronics industry, PET is chosen to replace less ideal materials due to its excellent electrical insulating properties and resistance to distortion even at high temperatures. PET is also used to manufacture many parts in the automotive industry (Figure 5).

NIRS as a tool to assess the quality of PET

For over 30 years, near-infrared spectroscopy (NIRS) has been an established method for fast and reliable quality control within the PET industry. Despite this, many producers still do not consistently consider the implementation of NIRS in their QA/QC labs. Limited experience regarding application possibilities or a general hesitation about implementing new methods are some of the reasons behind this.

The advantages of using NIR spectroscopy for QA/QC are numerous. One major advantage of NIRS is the determination of multiple parameters in just 30 seconds with no sample preparation! The non-invasive light-matter interaction used by NIRS, influenced by physical as well as chemical sample properties, makes NIRS a suitable method for the determination of several critical quality parameters in these polymers and many more.

In the remainder of this article, a short overview of PET applications is presented, followed by available turnkey solutions for PET, developed according the NIRS implementation guidelines of ASTM E1655.

For more detailed information about NIRS as a secondary technique, read our previous blog posts on this subject.

Benefits of NIRS: Part 1

Benefits of NIRS: Part 2

Benefits of NIRS: Part 3

Benefits of NIRS: Part 4

Applications and parameters for PET with NIRS

During production of PET it is important to check certain parameters to guarantee the quality. These parameters include the diethylene glycol content, isophthalic acid content, intrinsic viscosity (ASTM D4603), and the acid number (AN). Determination of these parameters is a lengthy and challenging process due to the limited solubility of the sample and the need to use different analytical methods.

The most relevant applications for NIRS analysis of PET are listed in Table 1.

Table 1. Available Application Notes for use of NIRS for PET

Polymer Parameter Related NIRS Application Notes
Polyethylene terephthalate (PET) Diethylene glycol, Intrinsic Viscosity, Acid number, Isophthalic acid AN-NIR-023

Where can NIRS be used in the production process of PET?

Figure 6 shows the individual production steps from the plastic producer via plastic compounder and plastic converter to the plastic parts producer. The first step in which near-infrared lab instruments can be used is when the pure polymers like PET are produced, and their purity needs to be confirmed. NIRS is also a very useful technique during the next step where polymers are compounded into intermediate products to be used for further processing.

Figure 6. Illustration of the polyethylene terephthalate production chain.

Easy implementation of NIR spectroscopy for plastic producers

Metrohm has extensive expertise with analysis of PET and offers a turnkey solution in the form of the DS2500 Polymer Analyzer (Figure 7). This instrument is a ready-to-use solution to determine multiple quality parameters in PET.

Figure 7. Turnkey solution for PET analysis with the Metrohm DS2500 Polymer Analyzer.

Application example: Pre-calibrations available for the PET industry on the DS2500 Polymer Analyzer

Due to the limited solubility of polyethylene terephthalate and the need to use several different analytical methods, the determination of the parameters listed in Table 2 is a lengthy and challenging process with conventional laboratory techniques.

Table 2. Primary method vs. NIRS for the determination of various quality parameters in PET samples.
Parameter Primary method Time to result (primary method) NIRS benefits
Diethylene Glycol content

Extraction + HPLC-MS

45 min. preparation + 40 min. HPLC-MS

 

 

All four parameters are measured simultaneously within a minute, without sample preparation or the need of any chemical reagents

Isophthalic acid content Dissolve + HPLC 45 min. preparation + 40 min. HPLC
Intrinsic viscosity Dissolve + Viscometer 90 min. preparation + 1 min. Viscometer
Acid number Dissolve + Titration 90 min. preparation + 10 min. Titrator

The NIRS prediction models created for PET are based on a large collection of real product spectra and is developed in accordance with ASTM E1655 Standard practices for Infrared Multivariate Quantitative Analysis. For more detailed information on this topic, download the free White Paper.

White Paper: Near-Infrared Spectroscopy: Quantitative analysis according to ASTM E1655


To learn more about pre-calibrations for PET, download our brochure and visit our dedicated webpage.

Brochure: Quality control of polymers (PE, PP, PET, Polyamide) – Fast results with NIR pre-calibrations

Pre-calibration for PET


The result of this turnkey solution for rapid non-destructive determination of the key quality parameters for PET listed in Table 2  is shown in Figure 8.

Figure 8. Turnkey solution for diethylene glycol, isophthalic acid, intrinsic viscosity and acid number in PET using the Metrohm DS2500 Polymer Analyzer. A: Sampling and analysis of PET granulate. B: Results of the four analyses from NIRS compared to a primary laboratory method along with the Figures of Merit (FOM) for each analysis.

This solution demonstrates the feasibility of NIR spectroscopy for the analysis of multiple parameters in PET in less than one minute without sample preparation or using any chemical reagents. Learn more about the procedure in our free Application Note:

Quality Control of PET – Determination of diethylene glycol, isophthalic acid, intrinsic viscosity, and acid number within one minute with NIRS

Other installments in this series

This article is a detailed overview of the use of NIR spectroscopy as the ideal QC tool for the analysis of polyethylene terephthalate (PET). Other installments in this series are dedicated to:

Overview of NIRS in polymer production

Polyethylene and Polypropylene (PE & PP)

Polyamide (PA)

Polyols and Isocyanates to produce Polyurethane (PU)

Author
Guns

Wim Guns

International Sales Support Spectroscopy
Metrohm International Headquarters, Herisau, Switzerland

Kontakt