Aplikacje
- 410000001-CChoosing the Most Suitable Laser Wavelength For Your Raman Application
Raman instrumentation can use lasers of different laser excitation, giving the same Raman spectrum for a sample. This paper presents the specific strengths and weaknesses that different excitation wavelengths provide, allowing a user to optimize the measurement of different samples by their choice of Raman excitation laser wavelength.
- 410000002-BCarbon Black At-line Characterization Using a Portable Raman Spectrometer
In this article portable Raman spectroscopy as an effective tool for at-line characterization of carbon black is presented. Raman spectroscopic analysis can be an effective test to characterize carbon black material, including the structural order.
- 410000003-APortable Raman Spectroscopy for the Study of Polymorphs and Monitoring Polymorphic Transitions
Raman spectroscopy is used for material characterization by analyzing molecular or crystal symmetrical vibrations and rotations that are excited by a laser, and exhibit vibrations specific to the molecular bonds and crystal arrangements in the molecules. Raman technology is a valuable tool in distinguishing different polymorphs. Examples of portable Raman spectroscopy for identification of polymorphs and in monitoring the polymorphic transiton of citric acid and its hydrated form are presented.
- 410000004-ARaman Spectroscopy in Archaeological Studies
Portable Raman spectroscopy is an invaluable tool in the study of archaeological sites, allowing for in situ analysis which minimizes the impact of such studies on important cultural sites. The flexibility of the use of a fiber optic probe and tripod-mounted video microscope with a light weight instrument reduces the need for sampling, and increases the ability to make representative measurements over what can be very large sample areas. The information content of Raman spectroscopy aids in the understanding of the materials used in the construction and restoration of important archaeological sites, and in understanding the degradation that is occurring which should aid in preservation and restoration work.
- 410000005-BPortable Raman Instrumentation for SERS Applications
For SERS developers and end users of SERS for specific applications to investigate low concetation levels of compounds, the centerpiece of their technological platform must be a Raman setup that provides reliable lab grade performance and is affordable and portable, allowing them to tackle real world problems. The portable i-Raman Plus system coupled with a BAC151 video microscope sampling accessory provides an ideal setup. With the performance and flexibility of use with different laser spot size and power for SERS research.
- 410000006-BLow-frequency Raman spectroscopy
Raman spectroscopy is an advantageous analytical tool that allows for the measurement of molecular structure and identifying chemical composition of materials based on the rotational and vibrational modes of a molecule. With advanced technology and an optimized optical design, the B&W Tek BAC102 series E-grade probe can access lower frequency modes down to 65 cm-1, providing key information for applications in protein characterization, polymorph detection, and identification, along with material phase and structure determination.
- 410000008-ARaw Materials Identification through Multiple Polyethylene Bags
The NanoRam is able to test material through multiple layers of transparent plastic bags. Postive identification of material on PE bags from 1 to 9 layers were obtained, demonstrating minimum interference from the PE bags on the material identification result.
- 410000009-ARapid Identification of Heroin with Handheld Raman
Raman spectroscopy is used widely by law enforcement as a field screening tool due to its speed, selectivity and ease of use. The majority of materials can be identified by the Raman signature, as they exhibit sharp distinctive peaks serving as a molecular fingerprint. However, many street and real-world samples are dark in color and not pure. The dark color, often due to impurities, gives rise to fluorescence that interferes with the Raman measurement. One method to suppress the fluorescence of a sample and enhance the Raman activity / signal is by the use of Surface-Enhanced Raman Spectroscopy (SERS).
- 410000012-A01Rapid Detection of the Low Dose API in Xanax Using Surface-Enhanced Raman Spectroscopy for Anti-Counterfeiting Purposes
The emergence of counterfeit prescription drugs has become a concern for the pharmaceutical industry. Because of the low concentrations of APIs found in pharmaceutical drugs, normal Raman spectroscopy is typically not sensitive enough to detect the API from the surface of a pill. In this study we develop a surface-enhanced Raman spectroscopy (SERS)-based approach to identify a low-dose of the API alprazolam in a Xanax tablet using a handheld Raman spectrometer. If no SERS peaks consistent with alprazolam are observed from a Xanax tablet, the pill is a suspected fake. The method demonstrates the power of SERS to quickly verify the presence of alprazolam in the tablet for anti-counterfeiting purposes.
- 410000013-AFast and Selective Detection of Trigonelline, a Coffee Quality Marker, Using a Portable Raman Spectrometer
Portable Raman is used to quantify trigonelline, an alkaloid that contributes to the health benefits of some foods. A simple method to quantify the presence of diluted trigonelline in solutions using surface enhanced Raman spectroscopy is described. Portable Raman is a tool that could be used in quality control of food items such as coffee and quinoa.
- 410000014-BRaman Spectroscopy as a Tool for Process Analytical Technology
This article demonstrates the utility of portable Raman spectroscopy as a versatile tool for process analytical technology (PAT) for raw material identification, in-situ monitoring of reactions in developing active pharmaceutical ingredients (APIs), and for real-time process monitoring. Raw material identification is done for verification of starting materials as required by PIC/S and cGMP, and can be readily done with handheld Raman. Portable Raman systems allow users to make measurements to bring process understanding and also provide proof of concept for the Raman measurements to be implemented in pilot plants or large-scale production sites. For known reactions which are repetitively performed or for continuous online process monitoring of reactions, Raman provides a convenient solution for process understanding and the basis for process control.
- 410000016-AQuantification of Urea in Ethanol by Raman Spectroscopy
Urea in widely employed as a nitrogen-release fertilizer with more than 90 % of urea production destined for agricultural applications. Urea is also known to form complexes with fatty acids, which have been employed for separation of complex mixtures and purification processes. In this application note, we present the quantification of the concentration of urea in ethanol by Raman Spectroscopy and show how this method can be employed for determining the percentage of urea in a solid inclusion compound with stearic acid.
- 410000017-ARaman for See Through Material Identification Application Note
A new Raman system design is presented that expands the applicability of Raman to See Through diffusely scattering media such as opaque packaging materials, as well as to measure the Raman spectrum and identify thermolabile, photolabile, or heterogeneous samples.
- 410000019-BQuantification of methanol in contaminated spirits with Raman
Methanol, often present in spirits prepared with industrial solvents like wood alcohol, can lead to blindness and even death when ingested. After an incident involving methanol-laced alcohol in the Czech Republic, they adopted Raman spectroscopy as the preferred method for identifying and quantifying methanol in contaminated spirits, following an exhaustive study using various screening tools. This Application Note discusses the reasons why Raman spectroscopy is the ideal choice for this application and shows a real-world example of Raman analysis of methanol-laced rum.
- 410000021-APortable Raman Spectroscopy in Forensics: Explosive Residues and Inflammable Liquids
The suitability and potential of Raman spectroscopy in forensics is widely known by forensic specialists who use it in the laboratory to identify a wide variety of compounds including explosives, drugs, paints, textile fibers and inks. However, the use of laboratory-grade Raman outside the laboratory, such as for in‐situ analysis at a crime scene, was something thought possible only in forensic‐fiction until just a few years ago. Fortunately, modern portable Raman spectrometers are commercially available, and their instrumental features are comparable to Raman lab‐ spectrometers.To prove this, some extraordinarily demanding and challenging applications, in which an in‐situ standoff identification of samples might be advisable, were tested.
- 410000024-BRaman solution suite for forensics applications
Law enforcement personnel, laboratory technicians, crime scene investigators and many others face a significant challenge for identification of materials in a forensic investigation.Traditionally, technicians used multiple forms of identification in order to collect results from various forms of forensic samples. Although certain technologies are ideal for precise laboratory identification, many technologies, such as Raman spectroscopy, can be successfully used for identification of multiple forensic sample types either directly in the field or in the lab. Raman spectroscopy is classified as a Category A analytical method by the Scientific Working Group for the Analysis of Seized Drugs (SWGDRUG; Version 7.1, 2016).
- 410000025-AIdentification of Forensic Fabrics Using a Portable Raman Spectrometer
At a crime scene, a police officer collects a fiber sample that may prove to be invaluable evidence in identifying a criminal or exonerating an innocent person. In recent years, Raman spectroscopy has been studied extensively for forensic fiber analysis because of the high selectivity of Raman signatures, non-destruction nature of the test, and the ability to conduct the analysis without any sample preparation. The Raman spectrum can be measured directly on fabrics or fibers mounted on glass slide with very little interference from the mounting resin or the glass.
- 410000026-AFast Ingredient Analysis of Edible Oils Using a Portable Raman Spectrometer
Edible oils are not only a major source of nutrition but also a key basic material in the food industry. Vegetable oils are increasingly important because of their high content in mono- and polyunsaturated fatty acids in comparison with animal fats. In this application note, the main ingredients of olive oil, camellia oil, arachis oil, sunflower seed oil, and colza oil are analyzed using a portable Raman spectrometer combined with chemometrics software.
- 410000028-AIdentification of Additives used in the Pharmaceutical and Food Industries with the NanoRam Handheld Raman Spectrometer
Today’s Raman instrumentation is faster, more rugged, and less expensive than previous instrumentation.The design of high performance, portable and handheld devices has introduced the technology to new application areas that were previously not possible with older, more cumbersome instruments. Handheld Raman instruments such as the NanoRam® from B&W Tek are well-suited for pharmaceutical applications such as the testing of raw materials, verification of final products and the identification of counterfeit drugs due to the technique’s extremely high molecular selectivity.
- 410000029-ASee Through Raman Technology: Expanded capabilities for through package identification using 785 nm and 1064 nm excitation Raman
See through Raman Spectroscopy (STRaman®) is a newly developed technology that expands the capability of Raman spectroscopy to measure samples beneath diffusely scattering packaging material. The STRaman technology features a much larger sampling area than the confocal approach. This design enhances the relative intensity of the signal from the deeper layers, thereby increasing the effective sampling depth, allowing the measurement of material inside visually opaque containers. The larger sampling area has the additional advantage of preventing sample damage by reducing the power density, as well as improving measurement accuracy by eliminating heterogeneous effect.
- 410000030-APortable Transmission Raman Spectroscopy for At-Line Content Uniformity Testing of Pharmaceutical Tablets
Analytical methods to perform CU testing should ideally be fast, noninvasive and achieved with limited sample preparation. Recently, transmission near-infrared (NIR) spectroscopy and transmission Raman spectroscopy have both been explored as alternative methods for rapid and non-destructive on- and at-line CU testing with no sample preparation. Although quick and nondestructive, transmission NIR spectroscopy suffers from poor chemical selectivity and is sensitive to changes in the testing environment. Transmission Raman spectroscopy combined with chemometric modeling is quickly emerging as a valued technique for CU testing due to its high chemical specificity, which is particularly useful when dealing with complex pharmaceutical formulations that contain multiple components.
- 410000031-ARapid Field Testing of Ecstasy Pills Using a 1064-nm Handheld Raman Device
B&W Tek’s TacticID®-1064 is a field-ready handheld Raman system utilizing 1064-nm wavelength laser excitation. Designed for forensic analysis by safety personnel, first responders, and law enforcement personnel, the TacticID-1064 significantly reduces fluorescence, allowing users to identify tough street samples such as ecstasy tablets in a variety of colors and mixture forms.
- 410000032-APros and Cons of Using Correlation Versus Multivariate Algorithms for Material Identification via Handheld Spectroscopy
The two most common mathematical representations used with handheld Raman spectroscopy as decision-making tools for spectroscopic data: Hit Quality Index (HQI) and significance level (p-value) are presented.
- 410000033-AMicro-Raman Spectroscopy in Thin Section Analysis of Rock Mineralogy
Correct identification of mineral phases in rock thin sections is essential to petrographic and petrologic analysis of rocks. Portable Raman coupled to an optical microscope gives chemical information along with the optical images to give a higher certainty of identification than traditionally used optical micropcopy alone.
- 410000034-AThe Advantages of a Compact, Thermoelectrically-Cooled Fiber Optic Spectrometer for Raman and Fluorescence Spectroscopy
The benefits of a TE-cooled spectrometer in Raman systems are discussed to deliver lower system noise over longer integration times, resulting in lower limits of detection.
- 410000035-AB&W Tek TacticID for Narcotics Identification
Forensics testing of samples encountered by law enforcement and customs agents is based on analytical techniques that are now being miniaturized and simplified and are making their way into field instrumentation. Field testing with Raman spectroscopy allows users to conduct reliable measurements at the point of arrest, reducing the burden on crime labs and accelerating the prosecution process.
- 410000036-ACost & Benefits of Handheld Raman for Quality Control Testing of Incoming Raw Materials in the Pharmaceutical Supply Chain
Handheld Raman solutions have improved the ability to do complete incoming raw material testing quickly without the need for sample preparation. The NanoRam handheld Raman contributes to increased quality testing with a cost-effective technology used at point of receipt, thus minimizing steps to material acceptance, giving a high return on investment (ROI).
- 410000037-AIn-situ Monitoring of a Moisture-Induced Polymorphic Transition using Raman Spectroscopy and Gravimetric Vapor Sorption
The combination of Raman spectroscopy and vapor sorption techniques provides a comprehensive understanding of vapor-solid interactions of pharmaceutical materials as it relates to the structural properties.This paper investigates the in-situ monitoring of a moisture-induced polymorphic transformation (D-mannitol from delta to beta form) using a combined Raman-vapor sorption technique.
- 410000038-AMaterial ID through Dark Brown PVBag
This technical note is to demonstrate the NanoRam material identification through dark brown plastic bags. NanoRam is shown to work for material identification inside dark brown polyvinyl bag.
- 410000039-AQuantitative Analysis of Solutions Using a High Resolution Portable Raman Spectrometer
Ternary mixtures of aqueous sugar solutions are measured and multivariate models of the concentration of analytes developed using BWIQ software.
- 410000040-ASampling Guidelines for Handheld Raman Measurements – What You Need To Know
Handheld Raman is used for raw material testing of different sample types and forms. The use of optimized sampling accessories enhances the utility of handheld Raman without compromising data quality or complicating testing.
- 410000042-AProper care and handling of fiber-optic cables
Fiber-optic cables are marvels of innovation for modern spectroscopic instrumentation. The advantages offered by fiber optical cable-based sampling include great flexibility for enabling measurements at various sample sites, ease of use, and flexibility for easy transportation. With this freedom however comes increased responsibility for care and maintenance of the associated fiber accessories to ensure the measurement quality and fiber durability.
- 410000043-AHigh Throughput Large Spot Adaptor
Conventional Raman typically has a very small sampling area with a high power density (PD) at the laser focal point on the sample, which means that only a limited portion of a sample is measured, and the result tends to be irreproducible for heterogeneous sample. The high power density may also cause samples to heat up or burn. The large spot adaptor (LSA) for B&W Tek’s handheld Raman products, featuring a much larger sampling area of 4.5 mm in diameter, is designed to overcome these issues.
- 410000044-AReduced Variable Multivariate Analysis for Material Identification with the NanoRam®-1064
The RVM method requires only a few spectra to make a model and can be quickly developed on the NanoRam-1064. Multivariate analysis of the Raman spectra on handheld Raman instruments provides more robust methodologies for identifying samples.
- 410000046-AQTRam® for Content Uniformity Analysis of Low-Dose Pharmaceutical Tablets
In this note, we use a model drug, acetaminophen, to demonstrate the capability of QTRam® to quantify low concentrations of API in compressed tablets.QTRam® is a compact transmission Raman analyzer designed specifically for content uniformity analysis of pharmaceuticals in solid dosage forms.
- 410000047-ANanoRam-1064 Fast Fact: Raw Material Verification of Cellulose and its Derivatives
Cellulose is a common naturally-derived raw excipient found in the majority of pharmaceutical products. Raw material testing is required to ensure that consumers are receiving quality cellulose and its derivatives. The NanoRam®-1064 is an asset for pharmaceutical identity testing, minimizing fluorescence generated by typical handheld Raman systems with 785 nm lasers. As such, the NanoRam®-1064 is used here to identify cellulose derivatives that would normally fluoresce with a 785 nm laser.
- 410000048-AA-Mode: Customizable Library Capabilities for Advanced Users with the TacticID®-GP Plus Handheld Raman System
The TacticID®-GP Plus has multiple measurement modes to support safety and security users. A-Mode allows the user to create library Raman or SERS spectra customizable for spectral search range and hit quality index (HQI) threshold. A-mode is of beneficial use to forensics laboratories that would like to utilize expansion of SERS detection of designer drugs specific to their geographical regions or for food safety in perspective markets. In this example, A-Mode is used to create a SERS library of melamine to easily detect the presence of melamine in infant formula using a single indicator peak.
- 410000049-ANanoRam®-1064 Fast Facts: Botanical Verification
Botanicals are derived from plant materials and used for their medicinal and therapeutic properties in the nutraceuticals market. They are not as heavily regulated by the U.S. Food and Drug Administration (FDA) like the pharmaceuticals drug market, but they are required to follow Good Manufacturing Practice (GMP Requirements).The NanoRam®-1064 is an asset for pharmaceutical identity testing, minimizing fluorescence generated by typical handheld Raman systems with 785 nm lasers. As such, the NanoRam®-1064 is used here to identify botanicals that would normally fluoresce with a 785 nm laser.
- 410000050-AApplication Fast Fact Historic Stamp Inks
Stamps are cultural heritage objects that provide an invaluable amount of historical information. There is an increase of counterfeit historical inks and it is imperative that fraudulent stamps can be identified and removed from the market. The portable Raman i-Raman EX® with a 1064 nm laser is used because it minimizes the fluorescence of the ink. The i-Raman EX® also has the functionality of low laser power reduction down to 1% to prevent sample burning and the Raman video microscope system analyzes the smallest of details, which is imperative for cultural heritage analysis of an 1885 historical envelope.
- 410000051-BIdentification of microplastics with Raman microscopy
Research laboratories must expand their capabilities to routinely analyze candidate microplastics from environmental samples to determine their origin and help predict biological impacts. Spectroscopic techniques are well suited to polymer identification. Laboratory Raman spectroscopy is an alternative to confocal Raman microscopes and Fourier transform infrared (FTIR) microscopes for quick identification of polymer materials. Raman microscopy was used to identify very small microplastic particles in this Application Note.
- 410000052-ASee-Through Measurements of Illicit Substances in Commercial Containers with the TacticID®-1064 ST
The TacticID®-1064 ST is a 1064 nm handheld Raman system designed for law enforcement officials, first responders, and customs and border protection officers for rapid field identification of illicit substances such as narcotics, explosives, and other suspicious materials.The TacticID-1064 ST is specially designed with see-through Raman functionality to measure materials through both transparent and opaque containers. These through-barrier measurements remove the need for active sampling of potentially dangerous compounds such as fentanyl, leading to safer operations and reduced wait time for clear results.
- 410000053-AQuantitative Analysis of a Water-soluble Polymer Using the i-Raman EX Spectrometer
Quantitation of the functionalization of a water-soluble polymer was achieved using a portable Raman spectrometer. The Raman spectrum provides strong, unique bands for both the initial and fully reacted polymer. This enables development of a simple, robust quantitative analysis of the percent polymer functionalization. This method is now routinely used in a manufacturing plant's quality control laboratory.
- 410000054-ATechnical Note: Method Development with NanoRam®-1064
Although the process of building, validating and using a method is well-defined through software, the robustness of the method is dependent on proper practice of sampling, validation, and method maintenance. In this document, we will detail the recommended practices for using the multivariate method with NanoRam-1064. These practices are recommended for end users who are in the pharmaceutical environment, and can expand to other industries as well. This document aims to serve as a general reference for NanoRam-1064 users who would like to build an SOP for method development, validation and implementation.
- 410000055-AThe Importance of Relative Intensity Correction of Raman Data and How to Utilize it for i-Raman Series Portable Raman Instruments in BWSpec Software
An important aspect of collecting Raman data to make it comparable across instruments is correcting for the spectrometer’s relative intensity, since the relative response for each Raman spectrometer is unique. Standard reference materials (SRMs) are optical glasses that emit a broadband luminescence spectrum when illuminated with a Raman laser at a specific wavelength. This spectrum is applied as the spectral-intensity response correction for a specific instrument, to remove instrumental artefacts. The standard software for i-Raman series portable instruments, BWSpec, has functions for applying this instrument-specific correction. This technical note explains the relative intensity correction, and how to apply it using BWSpec software.
- 410000056-ACounterfeit Adderall Pills Identification with TacticID Mobile
In this case study, a suspected counterfeit Adderall pill was measured directly with a TacticID Mobile using a point-and-shoot adapter. The spectra of the suspected couterfeit pill was found to contain cellulose and caffeine, but not the active ingredient. The TacticiD Mobile with 1064-nm laser excitation provides fluorescence suppression, giving those on the front lines a tool in the fight against dangerous counterfeit drugs.
- 410000057-ATechnical Note: Spectral Preprocessing for Raman Quantitative Analysis
Raman spectroscopy’s use for process analytics in the pharmaceutical and chemical industries continues to grow due to its nondestructive measurements, fast analysis times, and ability to do both qualitative and quantitative analysis. Spectral preprocessing algorithms are routinely applied to quantitative spectroscopic data in order to enhance spectral features while minimizing variability unrelated to the analyte in question. In this technical note we discuss the main preprocessing options pertinent to Raman spectroscopy with real applications examples, and to review the algorithms available in B&W Tek and Metrohm software so that the reader becomes comfortable applying them to build Raman quantitative models.
- 410000059-BCharacterization of carbon materials with Raman spectroscopy
Raman spectroscopy is a valuable tool for the characterization of carbon nanomaterials due to its selectivity, speed, and ability to measure samples nondestructively. Carbon materials typically have simple Raman spectra, but they contain a wealth of information about internal microcrystalline structures in peak position, shape, and relative intensity.
- 410000061-AIdentification of Starting Materials inPharmaceutical industry using STRam®-1064
100% starting materials identification testing is one of the FDA’s directives as per 211.84 for FDA regulated industries such as Pharmaceutical, Vaccines, Cosmetics, Tobacco, Animal veterinary products, Food, etc. STRam®-1064 is a Raman analyzer uniquely suited for this purpose. It measures samples through thick packaging materials such as plastics, multilayer kraft paper sacks, and HDPE containers. A long wavelength laser is used to suppress fluorescence. The ID algorithm isolates the sample signature by subtracting that of the packaging material and compares that with library spectra to achieve identification.
- 8.000.5303Poster: #KnowNOVA
This poster presents some practical tips to make your daily work with the NOVA software easier.
- 8.000.5304Poster: 6 easy steps to Optimize your NOVA procedure
This poster summarizes how to optimize NOVA procedures in 6 easy steps.