Byli jste přesměrováni na vaši místní verzi požadované stránky

Green hydrogen, future fuel: Using potentiostats to develop new catalysts for hydrogen production

21. 6. 2021

Článek

Hydrogen – clean and green?

Due to its high gravimetric energy density and zero pollution emission, «green hydrogen» is a clean and sustainable energy carrier which is expected to become one of the fuels of the future. Green hydrogen is produced with renewable energy sources, and it can help to mitigate global warming by using cleaner fuels.

Producing green hydrogen with electrolysis

The most favorable way to produce green hydrogen is via water splitting electrolysis, where water (H2O) is broken down into its counterparts by using a direct electric current. Electrolysis is a sophisticated technique that has been used for many decades in industry. When using this technique for the production of hydrogen, drawbacks are the sluggish reaction kinetics when using inexpensive catalysts or the high costs for more optimal catalysts (e.g. platinum). To produce hydrogen in an efficient and economical manner, the goal for researchers around the world is to develop catalysts for this purpose which are highly active, inexpensive, and stable over long periods.

This article explains in more detail how Metrohm potentiostats can be used to characterize recently developed catalysts for electrochemical hydrogen production.

Learn more about Metrohm potentiostats here

Electrode reactions

Considering alkaline solutions, the water splitting reaction can be described by two half reactions (Figure 1):

  • Hydrogen Evolution Reaction (HER) at the cathode
  • Oxygen Evolution Reaction (OER) at the anode