Byli jste přesměrováni na vaši místní verzi požadované stránky

Intuitive spectroelectrochemistry: How user-friendly cells make analysis even easier

18. 9. 2023

Článek

Spectroelectrochemistry (SEC) is currently among one of the most promising emerging analytical techniques. Although its potential was never in doubt, the various equipment needed to perform measurements, the use of up to three computers for data processing, and the complexity of the cell setups discouraged many researchers from utilizing SEC for their research despite its advantages. The introduction of the state-of-the-art SPELEC line of instruments—fully integrated, perfectly synchronized, and controlled by a single software—has filled this gap, making SEC even more accessible. However, one key requirement still needed for SEC to be suitable for all laboratories is the availability of user-friendly cells for different configurations: transmission, reflection, and flow conditions. This article describes these different kinds of SEC cells in detail.

Addressing the need to overcome limitations

Instrumental limitations are still found, e.g., in the development of SEC cells. Some spectroelectrochemical devices have drawbacks such as: strict design specifications (shape, size, and electrode material) where more conventional options cannot be used, the devices require larger volumes of samples solution, the cells are made of many pieces requiring complex and tedious assembly/disassembly protocols, etc. 

In order to facilitate the adoption of this technique, new and innovative SEC cells with updated setups have been developed. These devices offer several advantages: 

  • easy handling
  • versatility for working with different electrodes
  • chemical resistance to different media
  • simple and fast assembly and disassembly
  • low ohmic drop resistance
  • and more!

Furthermore, opaque and closed cells eliminate environmental interferences. This also functions as a safety feature when a laser is used as a light source, as the beam is prevented from leaving the confines of the cell.

Illustration of the Raman scattering effect.
Figure 1. Illustration of the Raman scattering effect.

Raman SEC: a fingerprint technique with the right cell setup

Raman spectroelectrochemistry is a hyphenated technique that studies the inelastic scattering (or Raman scattering) of monochromatic light related to chemical compounds involved in an electrochemical process. This technique provides information about the vibrational energy transitions of molecules by using a monochromatic light source (usually a laser) that must be focused on the electrode surface at the same time as the scattered photons are collected (Figure 1).