Application Finder
- 410000013-AFast and Selective Detection of Trigonelline, a Coffee Quality Marker, Using a Portable Raman Spectrometer
Portable Raman is used to quantify trigonelline, an alkaloid that contributes to the health benefits of some foods. A simple method to quantify the presence of diluted trigonelline in solutions using surface enhanced Raman spectroscopy is described. Portable Raman is a tool that could be used in quality control of food items such as coffee and quinoa.
- 410000016-AQuantification of Urea in Ethanol by Raman Spectroscopy
Urea in widely employed as a nitrogen-release fertilizer with more than 90 % of urea production destined for agricultural applications. Urea is also known to form complexes with fatty acids, which have been employed for separation of complex mixtures and purification processes. In this application note, we present the quantification of the concentration of urea in ethanol by Raman Spectroscopy and show how this method can be employed for determining the percentage of urea in a solid inclusion compound with stearic acid.
- 410000019-BQuantification of methanol in contaminated spirits with Raman
Methanol, often present in spirits prepared with industrial solvents like wood alcohol, can lead to blindness and even death when ingested. After an incident involving methanol-laced alcohol in the Czech Republic, they adopted Raman spectroscopy as the preferred method for identifying and quantifying methanol in contaminated spirits, following an exhaustive study using various screening tools. This Application Note discusses the reasons why Raman spectroscopy is the ideal choice for this application and shows a real-world example of Raman analysis of methanol-laced rum.
- 410000028-AIdentification of Additives used in the Pharmaceutical and Food Industries with the NanoRam Handheld Raman Spectrometer
Today’s Raman instrumentation is faster, more rugged, and less expensive than previous instrumentation.The design of high performance, portable and handheld devices has introduced the technology to new application areas that were previously not possible with older, more cumbersome instruments. Handheld Raman instruments such as the NanoRam® from B&W Tek are well-suited for pharmaceutical applications such as the testing of raw materials, verification of final products and the identification of counterfeit drugs due to the technique’s extremely high molecular selectivity.
- 410000048-AA-Mode: Customizable Library Capabilities for Advanced Users with the TacticID®-GP Plus Handheld Raman System
The TacticID®-GP Plus has multiple measurement modes to support safety and security users. A-Mode allows the user to create library Raman or SERS spectra customizable for spectral search range and hit quality index (HQI) threshold. A-mode is of beneficial use to forensics laboratories that would like to utilize expansion of SERS detection of designer drugs specific to their geographical regions or for food safety in perspective markets. In this example, A-Mode is used to create a SERS library of melamine to easily detect the presence of melamine in infant formula using a single indicator peak.
- 8.000.6028Ultratrace determination of uranium(VI) in drinking water by adsorptive stripping voltammetry according to DIN 38406-17
A convenient adsorptive cathodic stripping voltammetric (AdCSV) method has been developed for trace determination of uranium(VI) in drinking water samples using chloranilic acid (CAA). The presence of various matrix components (KNO3, Cl-, Cu2+, organics) can impair the determination of the uranium-CAA complex. The interferences can be mitigated, however, by appropriate selection of the voltammetric parameters. While problematic water samples still allow uranium determination in the lower µg/L range, in slightly polluted tap water samples uranium can be determined down to the ng/L range, comparable to the determination by current ICP-MS methods.
- 8.000.6067Fully automatic determination of sodium in food samples
The analysis described in this poster dicusses thermometric titration as a promising method for the straightforward sodium determination in foodstuffs. Thermometric sodium titration was tested for its applicability to various food matrices such as soups, gravy and several salty snacks. Enthalpy change can be monitored as a change in temperature of the solution using a sensitive digital thermometer. The sodium determination described here relies on the exothermic precipitation of elpasolite (NaK2AlF6). The titrant is a standard aluminum solution which contains an excess of potassium ions. The titration is performed directly on a suspension of the food sample and is completed in under two minutes. The method is robust, can be fully automated and due to the highly reproducible high-frequency homogenization, copes with a variety of challenging food matrices (ketchup, instant soups, pretzels, etc.). In addition to this application note, you can find more information on thermometric sodium determination in foods in our application video available on YouTube: https://youtu.be/lnCp9jBxoEs
- 8.000.6079Automated Karl Fischer titration for liquid samples using edible oils as an example
The poster describes the development of an automated Karl Fischer method for determining the water content in different edible oils.
- 8.000.6087Determination of hexavalent chromium in drinking water according to a U.S. EPA Method
This poster looks at the possibility to modify the existing EPA Method to meet California's rigorous public health goal (PHG) of 0.02 µg/L. After optimizing instrument settings and method parameters, a method detection limit (MDL) of 0.01 µg/L is obtained.
- 8.000.6097TP screen printed ethanol sensor (EN)
Non-enzymatic ethanol sensor based on a nanostructured disposable screen-printed electrode.
- 8.000.6112Technical Poster: Haloacetic acids in water
LC-MS/MS quantification methods are commonly used to determine trace levels of organic compounds. However, highly polar reversed phases (RPs) lack sufficient retention for very polar compounds, or they fail for charged organics. Separation using ion chromatography (IC) and subsequent MS/MS detection is an innovative alternative approach that combines the fast elution and flexibility of the IC system with the excellent resolution and high sensitivity of the MS/MS detector. This poster presents a fast, robust and reliable IC-MS/MS method for the detection of HAAs and other ionic analytes using the high-end MS/MS system QTRAP 6500+ from SCIEX coupled to a the 940 Professional IC Vario One SeS/PP/HPG instrument. This analytical setup is able to identify and quantify the presence of HAAs at trace levels with LLODs between 0.02 μg/mL and 0.2 μg/L on a single HAA. This capability easily fulfills the sensitivity requirements specified in EU Drinking Water Directive, which specifies a maximum residue level (MRL) of 60 mg/mL for the sum of monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, monobromoacetic acid and dibromoacetic acid present in the representative sample.
- AB-036Half wave potentials of metal ions for the determination by polarography
In the following tables, the half-wave potentials or peak potentials of 90 metal ions are listed. The half-wave potentials (listed in volts) are measured at the dropping mercury electrode (DME) at 25 °C unless indicated otherwise.
- AB-060Polarographic determination of fructose
Fructose (fruit sugar) is the only ketose that occurs naturally. It is found free in a mixture with dextrose (honey, sweet fruits, tomatoes) or bound as a component of cane sugar and various starch-like carbohydrates. As fructose tastes sweeter than dextrose, it finds great use as a sweetening agent.In 1932, the polarographic reducibility of sugar was described for the first time by Heyrovsky and Smoler. The following method can be used to determine the fructose content of fruit, fruit juice and honey quantitatively.
- AB-074Determination of antimony, bismuth, and copper by anodic stripping voltammetry
This Application Bulletin describes the voltammetric determination of the elements antimony, bismuth, and copper. The limit of detection for the three elements is 0.5 ... 1 µg/L.
- AB-084Titrimetric analysis of vinegar
The quality of a vinegar depends on various factors. Since the contents of the individual components vary widely even from bottle to bottle, it is impossible to give average values. This Bulletin describes the determination of the following parameters in vinegar: pH value, total titratable acid, volatile, and non-volatile acid, free mineral acid as well as free and total sulfurous acid.
- AB-112Quantitative determination of metals that can be precipitated by potassium hexacyanoferrate(II) in wine («décassage» of wine)
Wine sometimes contains heavy metals which can be precipitated out by the addition of potassium ferrocyanide. Generally, these are quantities of iron ranging between 1 and 5 mg, and exceptionally up to 9 mg Fe/L. Zinc, copper, and lead – in descending order of content – may also be present. To estimate the quantity of potassium ferrocyanide necessary for the «décassage of the wine», only very complicated and relatively inaccurate methods have been described until now.This Bulletin permits accurate results to be obtained easily with a simple instrumentation. The results are available in a short time.
- AB-117Determination of selenium by cathodic stripping voltammetry
In the past, selenium determinations have always been either unreliable or have required complicated methods. However, as selenium is on the one hand an essential trace element (vegetable and animal tissues contain about 10 μg/kg), while on the other hand it is very toxic (threshold value 0.1 mg/m3), it is very important to cover determinations in the micro range. Cathodic stripping voltammetry (CSV) enables selenium to be determined in mass concentrations down to ρ(Se(IV)) = 0.3 μg/L.
- AB-121Determination of nitrate with the ion-selective electrode
It has been known for years that consuming too much nitrates from foodstuffs can result in cyanosis, particularly for small children and susceptible adults. According to the WHO standard, the hazard level lies at a mass concentration c(NO3-) ≥ 50 mg/L. However, more recent studies have shown that when nitrate concentrations in the human body are too high, they can (via nitrite) result in the formation of carcinogenic and even more hazardous nitrosamines.Known photometric methods for the determination of the nitrate anion are time-consuming and prone to a wide range of interferences. With nitrate analysis continually increasing in importance, the demand for a selective, rapid, and relatively accurate method has also increased. Such a method is described in this Application Bulletin. The Appendix contains a cselection of application examples where nitrate concentrations have been determined in water samples, soil extracts, fertilizers, vegetables, and beverages.
- AB-126Polarographic determination of quinine
This Bulletin describes a simple polarographic method for the determination of quinine in drinks and tablets. Whereas in drinks quinine can be determined directly, in the case of tablets it must first be extracted. The limit of quantification is 0.2 mg/L or 4 μg/tablet.
- AB-130Chloride titrations with potentiometric indication
Potentiometric titration is an accurate method for determining chloride content. For detailed instructions and troubleshooting tips, download our Application Bulletin.
- AB-134Determination of potassium with an ion-selective electrode
Potassium is one of the most common elements and can be found in many different minerals and other potassium compounds. It is of importance for humans, animals and plants as it is an essential mineral nutrient and involved in many cellular functions like cell metabolism and cell growth. For these reasons, it is important to be able to declare the potassium content of food or soil to reduce problems that may arise by a potassium deficiency or extensive consumption.This bulletin describes an alternative to flame photometric method using an ion selective electrode and direct measurement or standard addition technique. Several potassium determinations in different matrices using the combined potassium ion-selective electrode (ISE) are presented here. Additionally, general hints, tips and tricks for best measurement practice are given.
- AB-176Determination of lead and tin by anodic stripping voltammetry
In most electrolytes the peak potentials of lead and tin are so close together, that a voltammetric determination is impossible. Difficulties occur especially if one of the metals is present in excess.Method 1 describes the determination of Pb and Sn. Anodic stripping voltammetry (ASV) is used under addition of cetyltrimethylammonium bromide. This method is used when:• one is mainly interested in Pb• Pb is in excess• Sn/Pb ratio is not higher than 200:1According to method 1, Sn and Pb can be determined simultaneously if the difference in the concentrations is not too high and Cd is absent.Method 2 is applied when traces of Sn and Pb are found or interfering TI and/or Cd ions are present. This method also uses DPASV in an oxalate buffer with methylene blue addition.
- AB-191Determination of cysteine and cystine simultaneously by polarography
After the degradation of biological samples (e.g. milk, wool, etc.), it is often important to know the cystine/cysteine ratio. This Application Bulletin describes the simultaneous, polarographic determination of the two amino acids. The determination is performed in perchloric acid solution at the DME. Samples with a high protein content require that the determination is performed in an alkaline solution.
- AB-196Determination of formaldehyde by polarography
Formaldehyde can be determined reductively at the DME. Depending on the sample composition it may be possible to determine the formaldehyde directly in the sample. If interferences occur then sample preparation may be necessary, e.g. absorption, extraction, or distillation.Two methods are described. In the first method formaldehyde is reduced directly in alkaline solution. Higher concentrations of alkaline or alkaline earth metals interfere. In such cases the second method can be applied. Formaldehyde is derivatized with hydrazine forming the hydrazone, which can be measured polarographically in acidic solution.
- AB-204Oxidation stability of oils and fats – Rancimat method
This document outlines Rancimat testing for both liquid and solid food samples, including direct and PEG methods, for oxidation stability QC in the food industry.
- AB-213Determination of nicotinamide by polarography
This Application Bulletins describes the determination of nicotinamide (vitamin PP), a vitamin of the B series. Instructions for the determination in solutions (e.g. fruit juice), vitamin capsules and multivitamin tablets are given. The linearity range of the determination is also specified. The limit of detection is approximately 50 μg/L nicotinamide.
- AB-225Simple wine analysis
The Bulletin describes the determination of the following parameters in wine: pH value, total titratable acid, free sulfurous acid, total sulfurous acid as well as ascorbic acid (vitamin C) and other reductones.
- AB-232Determination of antioxidant activity in accordance with the Rancimat method
The effectiveness of antioxidants can be expressed as antioxidant activity. It can be readily determined using the Rancimat method. This is accomplished by first determining the induction time of a mixture made up of hog fat and the antioxidant to be investigated and then by determining the corresponding time for hog fat alone. The quotient expresses the efficiency of the respective antioxidant and is referred to as the antioxidant activity index (AAI).This Application describes the determination of the antioxidant activity index of five common antioxidants.
- AB-317Determination of iron in the µg/L-range by polarography
This Application Bulletin describes two methods for the determination of iron at the Multi Mode Electrode.Method 1, the polarographic determination at the DME, is recommended for concentrations of β(Fe) > 200 μg/L. For this method the linear range is up to β(Fe) = 800 μg/L.For concentrations < 200 μg/LMethod 2, the voltammetric determination at the HMDE, is to be preferred. The detection limit for this method is β(Fe) = 2 μg/L, the limit of quantification is β(Fe) = 6 μg/L. The sensitivity of the method cannot be increased by deposition.Iron(II) and iron(III) have the same sensitivity for both methods.These methods have been elaborated for the determination of iron in water samples. For water samples with high calcium and magnesium concentrations such as, for example, seawater, a slightly modified electrolyte is used in order to prevent precipitation of the corresponding metal hydroxides. The methods can also be used for samples with organic loading (wastewater, beverages, biological fluids, pharmaceutical or crude oil products) after appropriate digestion.
- AB-342Automated calcium and magnesium determination in milk using 859 Titrotherm and 814 USB Sample Processor
This bulletin deals with the automated determination of calcium and magnesium in commercially available finished milk products using a 859 Titrotherm and a 814 USB Sample Processor. Calcium and magnesium in milk can be rapidly and easily titrated thermometrically using a standard solution of Na4EDTA as titrant.Thermometric titrations are conducted under conditions of constant titrant addition rate. The molarity of the titrant is computed automatically in tiamo (software) using the SLO command. Results are reported as mg Ca and Mg/100 mL.
- AB-418Utilization of the Polytron PT 1300 D (Metrohm version)
This Application Bulletin serves as the manual for the "Polytron PT 1300 D" (Polytron) homogenizer.
- AB-435Connection of the Eco Titrator to the PC
Eco Titrators provide the capability to send PC/LIMS reports directly to a PC. This feature is mainly used to transfer data to an external LIMS system or to simply store the data in a digitally on the PC. Additionally, it is possible to control the Eco Titrator by RS232 commands if the connection is set up according to the procedure described below.The data transfer from the Eco Titrator to a PC can be done by a software- or a hardware-based option. Additional accessories are needed for the hardware-based option whereas for the software-based option two additional softwares must be installed. Both solutions are described in this document.
- AB-443Determination of Glycerin Purity by Potentiometric Titration
This method is applicable to all samples containing glycerin in the absence of other triols or other compounds that react with periodate to produce acidic products. Glycerin may be determined in the presence of glycols. A periodate solution reacts slowly with diols and triols in acidic aqueous media at room temperature. A quantitative amount of formic acid is generated from the reaction with glycerin (a triol). The reaction with diols produces neutral aldehydes. The amount of formic acid generated by this reaction is determined by titration against sodium hydroxide.
- AN-C-070Cations and biogenic amines in wine
Determination of sodium, potassium, calcium, magnesium, putrescine, cadaverine, and histamine in a wine sample using cation chromatography with direct conductivity detection.
- AN-C-092Amines in fish
Determination of dimethylamine (DMA), trimethylaminoxide (TMAO), trimethylamine (TMA), putrescine, cadaverine, and histamine in a fish sample using cation chromatography with direct conductivity detection.
- AN-C-105Copper, zinc, iron(II), and manganese in wine by ion chromatography with post-column reaction and UV/VIS detection
Determination of copper, zinc, iron(II), and manganese in red wine using cation chromatography with UV/VIS detection after post-column reaction with PAR.
- AN-C-133Tap water analysis for cations using Metrohm intelligent Partial Loop Technique (MiPT)
Partial loop injection is a well known way of sample introduction to HPLC. In ion chromatography, it is not yet used to a large extent. Liquid handling with Metrohm's Dosino technology now enables to use partial loop injection on a highly reproducible and accurate level. It includes multi-level calibration out of one standard solution. This Application Note shows its use for parallel anion and cation determination in tap water applying one single Sample Processor. The anion results are shown in Application Note S–287.
- AN-C-141Cations in small sample volumes by using the intelligent Pick-up Injection Technique (MiPuT)
The determination of cations in tap water is a simple IC application. Here it is used to present Metrohm's intelligent Pick-up Technique (MiPuT). MiPuT enables the injection of volumes of minimum size from very small sample quantities. In the present case, two volumes of 10 µL from a sample 100 µL in size are used for anion and cation analysis, respectively. The calibration takes place through the injection of various volumes of a single standard solution. AN-S-302 describes the corresponding anion determination.
- AN-C-161Trimethylamine N-oxide and biogenic amines in addition to standard cations in white wine
Biogenic amines and trimethylamine N-oxide (TMAO) are indicators for the quality of grape fermentation. The consumption of amine-rich wines often leads to headaches, which is why the amine concentrations in wine must be monitored. This Application Note describes the determination of trimethylamine N-oxide, putrescine, cadaverine and histamine, in addition to various standard cations, with the aid of the Metrosep C 6 - 100/4.0 column and subsequent direct conductivity detection.
- AN-C-169Determination of cations in tobacco additives
Tobacco additives may contain cations like ammonium (see AN-C-168) as well as other cations as counter ions of organic acids. These additives include components to retain moisture and flavor of the tobacco. Ammonium is added to increase the appeal of smoking, and is therefore considered to increase the addictive potential. The determination of cations in tobacco additives is performed by ion chromatographic separation followed by non-suppressed conductivity detection.
- AN-CIC-033Monitoring PFASs in water sources
AOF (adsorbable organic fluorine) is used to screen for per- and polyfluorinated alkyl substances in aqueous matrices via pyrohydrolytic combustion and ion chromatography.
- AN-CIC-034Fast analysis of AOX in waters by CIC
Combustion ion chromatography (CIC) measures AOX (adsorbable organically bound halogens, i.e., AOCl, AOBr, AOI) and AOF as well as CIC AOX(Cl) according to DIN 38409-59 and ISO/DIS 18127.
- AN-COR-008Stepwise dissolution measurement
In this Application Note, stepwise dissolution measurement (SDM) is applied to aluminum samples coated with different materials, in order to gain insights in corrosion protection. The combination of the Autolab PGSTAT204 with the 1 L Autolab corrosion cell and the NOVA software provides the suitable setup to perform SDM and other corrosion experiments.
- AN-CS-003Biogenic amines in addition to standard cations with conductivity detection following sequential suppression and Dose-in Gradient
The concentrations of toxic, biogenic amines in foods, particularly in fish and wine, are an important quality characteristic. The present Application Note shows the separation of putrescine, cadaverine and histamine in addition to the standard cations. Separation takes place on a Metrosep C Supp 1 - 250/4.0 with Dose-in Gradient; quantification via conductivity detection following sequential suppression.
- AN-CS-004Determination of choline in baby milk powder
Choline is important for the biosynthesis of numerous molecules, e.g., the neurotransmitter acetylcholine, and exists as an intermediate product in the human metabolism. Concentration determination takes place after microwave digestion. Separation is performed on the Metrosep C Supp 1 - 250/4.0 column following sequential suppression. Separation from the standard cations is outstanding.
- AN-CS-014Biogenic amines besides other cations in red wine applying a high-pressure gradient
Biogenic amines are released during the winemaking process. In wine, they are present as odorless salts. However, in the mouth their flavor is partially liberated, influencing the appearance for the wine taste. Besides this, biogenic amines have been related to lack of hygiene or poor manufacturing practices. The biogenic amines are determined applying suppressed cation chromatography.
- AN-D-001Metrohm IC Driver for OpenLab CDS
This application focuses on the simultaneous analysis of cations and suppressed anions with a dual channel Metrohm IC operated by OpenLab CDS.
- AN-D-002Anions and cations in beer
This Application Note presents ion chromatography as a precise method to analyze anions in beer as well as cations with non-suppressed conductivity. Automation with Inline Ultrafiltration is also discussed.
- AN-EC-035Using a portable standalone system for easy fermentation monitoring
By using an enzymatic sensor with a screen-printed electrode, producers can measure lactic acid production, thereby monitoring fermentation processes.
- AN-H-058Determination of sodium as chloride in ketchup and sauces
Determination of sodium as chloride in ketchups, sauces and, similar food products.