Applications
- 8.000.6021Water analysis
A complete tap water analysis includes the determination of the pH value, the alkalinity and the total water hardness. Both the pH measurement and the pH titration by means of a standard pH electrode suffer from several drawbacks. First, the response time of several minutes is too long and, above all, the stirring rate significantly influences the measured pH value. Unlike these standard pH electrodes, the Aquatrode Plus with its special glass membrane guarantees rapid, correct and very precise pH measurements and pH titrations in solutions that have a low ionic strength or are weakly buffered. Total water hardness is ideally determined by a calcium ion-selective electrode (Ca ISE). In a complexometric titration, calcium and magnesium can be simultaneously determined up to a calcium/magnesium ratio of 10:1. Detection limits for both ions are in the range of 0.01 mmol/L.
- 8.000.6111Fully Automated Determination of pH Using Flow Cell Technology
A high throughput automated system was developed to determine pH of culture media using a pH module equipped with an external flow cell. A custom septum-piercing, vented needle was developed to accommodate the shape and size of the customer sample vials. For this application, both accurate and precise pH measurements were required. The data presented in this document was collected by a customer as a part of their validation process and was provided for use with their consent.
- AB-040Determining the pH value of paper
Two electrometric methods for determining the pH value of papers with homogeneous and heterogeneous pH cross-sections are described.
- AB-071pH value and oxidation reduction potential in soil samples – Determination according to EN 15933, ISO 10390, and ASTM D4972
The pH value and oxidation reduction potential (ORP) of soil provide important information about soil properties, such as solubility of minerals and ion mobility. Knowledge of these properties allows making predictions concerning plant growth, bacterial activity, nutrients that may be needed, possible corrosive effects on buildings, etc.Here, the determination of the pH value is described according to ISO 10390, EN 15933 and ASTM D4972. Th oxidation reduction potential determination is carried out in a suspension.
- AB-084Titrimetric analysis of vinegar
The quality of a vinegar depends on various factors. Since the contents of the individual components vary widely even from bottle to bottle, it is impossible to give average values. This Bulletin describes the determination of the following parameters in vinegar: pH value, total titratable acid, volatile, and non-volatile acid, free mineral acid as well as free and total sulfurous acid.
- AB-085Analysis of jams, fruit and vegetable juices, and their concentrates
This Bulletin describes analysis methods for determining the following parameters: pH value, total titratable acid, ash alkalinity, formol number, total sulfurous acid, chloride, sulfate, calcium, and magnesium. These methods are suitable for the analysis of jams, fruit and vegetable juices, and their concentrates.
- AB-086Measuring the pH value of dairy products
This Bulletin describes methods for measuring the pH value of dairy products. Particular attention has been paid to the handling, maintenance, and storage of the pH electrodes.
- AB-178Fully automated analysis of water samples
The determination of the physical and chemical parameters as electrical conductivity, pH value, p and m value (alkalinity), chloride content, the calcium and magnesium hardness, the total hardness, as well as fluoride content are necessary for evaluating the water quality. This bulletin describes how to determine the above mentioned parameters in a single analytical run.Further important parameters in water analysis are the permanganate index (PMI) and the chemical oxygen deman (COD). Therefore, this Bulletin additionally describes the fully automated determination of the PMI according to EN ISO 8467 as well as the determination of the COD according to DIN 38409-44.
- AB-188pH measurement technique
This Bulletin, using practical examples, indicates how the user can achieve optimum pH measurements. As this Bulletin is intended for actual practice, the fundamentals - which can be found in numerous books and publications - are treated only briefly.
- AB-221Standard methods in water analysis
This Bulletin gives a survey of standard methods from the field of water analysis. You will also find the analytical instruments required for the respective determinations and references to the corresponding Metrohm Application Bulletins and Application Notes. The following parameters are dealt with: electrical conductivity, pH value, fluoride, ammonium and Kjeldahl nitrogen, anions and cations by means of ion chromatography, heavy metals by means of voltammetry, chemical oxygen demand (COD), water hardness, free chlorine as well as a few other water constituents.
- AB-225Simple wine analysis
The Bulletin describes the determination of the following parameters in wine: pH value, total titratable acid, free sulfurous acid, total sulfurous acid as well as ascorbic acid (vitamin C) and other reductones.
- AB-304Titration of whole blood and blood plasma for acid-base analysis according to Joergensen and Stirum
The presented Application Bulletin describes the apparatus and methods that are used for acid-base analysis of whole blood and blood plasma by Joergensen and Stirum. Evaluation of the measured data is performed with a software sold by Komstar AG.
- AB-436Installation instructions TitrIC flex I
This document describes the recommended equipment, installation, and software handling instructions for the TitrIC flex I system combining IC and titration.
- AB-437Installation instructions TitrIC flex II
This document describes the recommended equipment, installation, and software handling instructions for the TitrIC flex II system combining IC and titration.
- AN-EC-002Reference electrodes and their usage
A reference electrode has a stable and well-defined electrochemical potential (at constant temperature), against which the applied or measured potentials in an electrochemical cell are referred. A good reference electrode is therefore stable and non-polarizable. In other words, the potential of such an electrode will remain stable in the used environment and also upon the passage of a small current. This application note lists the most used reference electrodes, together with their range of use.
- AN-EC-034Ion-selective electrodes based on screen-printed technology
Advances in polymeric membranes and screen-printed technologies have enabled miniaturized, portable potentiometric sensors ideal for point-of-care analysis.
- AN-I-032Dissolved oxygen, conductivity, and pH value in liquid dairy products
In the food industry, it is essential to determine and monitor certain quality parameters to guarantee consistency. This is especially important for liquid dairy products, which are subject to a strict cold chain. Both the dissolved oxygen (DO) and the pH value have proven to be reliable quality criteria. Oxygen shortens the shelf life and influences the product quality (e.g., nutritional value, color, and flavor). The DO content depends on the salinity in the sample, which is automatically calculated and corrected by the 914 pH/DO/Conductometer during the parallel conductivity measurement. Acidity is another important characteristic to measure that can be checked easily using the pH value. With the 914 pH/DO/Conductometer, all important quality criteria can be monitored with one device.
- AN-NIR-036Moisture content and pH value in crude tall oil (CTO)
This Application Note shows the fast and parallel determination of water content and pH value in crude tall oil samples using near-infrared spectroscopy (NIRS). Crude tall oil is an important byproduct of pulp production in the power process. NIRS is an efficient alternative to conventional laboratory methods: It permits rapid raw material inspection, process monitoring and final product checking.
- AN-NIR-093Quality Control of fermentation processes
The production of biofuels from renewable feedstock has grown immensely in the past several years. Bioethanol is one of the most interesting alternatives for fossil fuels, since it can be produced from raw materials rich in sugars and starch. Ethanol fermentation is one of the oldest and most important fermentation processes used in the biotechnology industry. Although the process is well-known, there is a great potential for its improvement and a proportional reduction in production costs. Due to the seasonal variation of feedstock quality, ethanol producers to need to monitor the fermentation process to ensure the same quality product is achieved. Near-infrared spectroscopy (NIRS) offers rapid and reliable prediction of ethanol content, sugars, Brix, lactic acid, pH, and total solids at any stage of the fermentation process.
- AN-NIR-099Quality Control of fermentation broths
Cell fermentation processes are a reliable production method for small molecules and protein-based active pharmaceutical ingredients (APIs). The fermentation process requires monitoring of many different parameters to ensure optimal production. These quality parameters include pH, bacterial content, potency, glucose, and concentration of reducing sugars. Traditional laboratory analysis takes a significant amount of time and requires different analytical techniques to monitor these different quality parameters. Near-infrared spectroscopy (NIRS) offers a faster and more cost-efficient alternative to traditional methods for the determination of critical parameters in fermentation broths at any stage of the fermentation process.
- AN-PAN-1035Online analysis of indigo, hydrosulfite, and other parameters in textile dye baths
The size of the indigo molecule makes it difficult to dye synthetic fibers, but the large pores of cellulose (such as in cotton) accept it readily. Indigo is insoluble in water, so it must first be reduced to the water-soluble leuco-indigo form by sodium hydrosulfite in a strong alkaline bath. Good circulation within the bath is imperative for consistent dye coverage, but care must be taken not to introduce any oxygen. Fabrics must be oxidized between dips in the dye bath in order to set the indigo within the pores of the fibers, but multiple dips are necessary for darker, uniform coverage. Many parameters need to be monitored and controlled to ensure high quality of the end product: the pH value for proper NaOH (alkali) dosage, the concentrations of both hydrosulfite and indigo, as well as the temperature of the bath and even the redox potential.
- AN-S-387Comprehensive water analysis with TitrIC flex II
The TitrIC flex II system is the perfect combination of titration, direct measurement, and ion chromatography for fully automated analysis of all key parameters. These include pH, conductivity, hardness, anions, cations, as well as the calculation of the ion balance: comprehensive water analysis from one system.
- AN-T-073Fully automated determination of conductivity, pH value, and alkalinity in tap water including sample preparation
The automated system Basic water analysis determines conductivity, pH value, and alkalinity in all kind of water samples. The high degree of automation (e.g., automated sample addition, automated calibration as well as automated titer and cell constant determination) minimizes errors and guarantees an outstanding reproducibility.
- AN-T-074Conductivity, pH value, alkalinity, and hardness in tap water
In this application note, a fully automated system is presented which allows the determination of several parameters according to various standards within one analysis. These include conductivity (ISO 7888, EN 27888, ASTM D1125, EPA 120.1), the pH value (EN ISO 10523, ASTM D1293, EPA 150.1), alkalinity (EN ISO 9963, ASTM D1067, EPA 310.1), and Ca/Mg content (ISO 6059, ASTM D1126, EPA 130.2). Additionally, the system transfers the required sample volume into an external titration vessel for the analysis, reducing manual sample preparation. Furthermore, all sensors can be automatically calibrated and the titer of each titrant can also be determined.
- AN-T-075Conductivity, pH value, alkalinity, and chloride in tap water
In this application note, a fully automated system is presented which allows the determination of several parameters according to various standards within one analysis. These include conductivity (ISO 7888, EN 27888, ASTM D1125, EPA 120.1), pH value (EN ISO 10523, ASTM D1293, EPA 150.1), alkalinity (EN ISO 9963, ASTM D1067, EPA 310.1), and chloride content (ISO 9297, ASTM D512, EPA 325.3). Additionally the system transfers the required volume of sample into an external titration vessel, further reducing manual sample preparation. Furthermore, all sensors can be calibrated automatically and the titer of each titrant can also be determined.
- AN-T-076Conductivity, pH value, alkalinity, hardness, and chloride in tap water
In this application note, a fully automated system is presented which allows the determination of several parameters according to various standards within one analysis. These include conductivity (ISO 7888, EN 27888, ASTM D1125, EPA 120.1), pH value (EN ISO 10523, ASTM D1293, EPA 150.1), alkalinity (EN ISO 9963, ASTM D1067, EPA 310.1), Ca/Mg (ISO 6059, ASTM D1126, EPA 130.2), and chloride (ISO 9297, ASTM D512, EPA 325.3). Additionally the system transfers the required volume of sample into external titration vessels for the different analyses, reducing manual sample preparation. Furthermore, all sensors can be automatically calibrated and the titer of each titrant can also be determined.
- AN-T-173pHe value of denatured ethanol fuel
The pHe is a measure of acid strength in alcohol fuels and in ethanol. It can be used as predictor of the corrosion potential of an ethanol-based fuel. The determination of the pHe is preferred over the total acidity, because total acidity overestimates the contribution of weak acids (e.g., carbonic acid) and underestimates the contribution of strong acids (e.g., sulfuric acid). Furthermore, the acid strength is an important parameter to determine in order to reduce the risk of failing motors.This Application Note describes the determination of the pHe value using the 913 pH Meter and the EtOH Trode according to ASTM D6423, which covers denatured fuel ethanol and ethanol fuel blends.
- AN-T-183Ethanol as blending component for petrol – Determination of pHe according to EN 15490
The pHe value is an indicator for the acid strength and shows the presence of strong acids or bases in ethanol. In Europe, ethanol is used as a blending component in gasoline and needs to have a pHe value between 6.5 and 9.0.This Application Note describes a fast and accurate determination of the pHe value using the EtOH-Trode.
- AN-T-201pH value of engine coolants or antirust
Corrosion of metallic components is an inherent problem for engines, because metals naturally tend to oxidize in the presence of water and/or acids. Increased acid content is indicated by a low pH value, and could lead to a variety of problems like a shorter storage life (stability) or a reduced buffer capacity of the used engine coolant or antirust.In this Application Note, engine coolants or antirust samples are dissolved in water, and the pH measurement using the Profitrode is carried out according to ASTM D1287.
- AN-T-205Fully automated water analysis by OMNIS
The determination of the physical and chemical parameters as electrical conductivity, pH value, alkalinity, the calcium and magnesium hardness as well as the total hardness are necessary for evaluating the water quality. A fast and accurate determination in tap water is realized using an automated OMNIS System working in parallel on different workstations. An 856 Conductivity Module with Dosinos extends the system.
- AN-T-211Fully automated wine analysis – Determination of free and total sulfurous acid, reductants, total acidity and pH value according to OIV
The analysis of the reductants, free and total sulfurous acid, pH and total acidity of wine can be performed fully automated on an OMNIS system based on the directive OIV-MA-AS323-04B, OIV-MA-AS313-01 and OIV-MA-AS313-15.Added components like SO2 have preserving properties and affect the microbiological environment (anti-microbacterial and enzyme-deactivating), they trap fermentation byproducts such as acetaldehyde and suppress a coloring into brown. The bound and free sulfurous acid are in an equilibrium with each other and can be determined via iodometric titration. Iodometric titration is also the method of choice to quantify other reductants, such as dyes, tanning agents, degradation products of carbohydrates and ascorbic acid. Finally, the acidity of wine is an important quality parameter, which affects the color and taste of wines. The total acidity and the pH of wine can be determined on the same system. Hence, Metrohm offers an all-in-one solution for the analysis of these mentioned key parameters.
- AN-T-219pH value and TTA in flour, dough, and bread
In order to consistently manufacture high quality baked goods, it is critical to measure the pH value and acidity content in the raw materials and during the production steps. These factors have a major influence on the taste and storage lifetime of the final product. Consistent product quality is only possible with precise measurements during the process.This Application Note describes the measurement of pH value and the total titratable acidity in flour, dough, and bread using the Eco Titrator from Metrohm.
- AN-T-221SET titration of HPLC mobile phases
This Application Note shows the automatic pH adjustment of a mixture of acetonitrile, water and amine using a Metrohm titrator.
- AN-T-225Analysis of caffeine, pH, and acidity in coffee
Many of the key factors that influence coffee taste correlate with chemical properties that can be measured. These include pH, titratable acidity, refractive index, and caffeine. Historically, many of these analyses have included long, manual sample preparation processes using the time-consuming, liquid chromatography (LC) technique. This Application Note looks at a faster, simpler, alternative method for analysis of key quality parameters in coffee using a single titration platform: OMNIS.
- AN-T-235Determination of pH in carbon black
The pH value in carbon black, an essential additive in modern lithium-ion batteries, is accurately and reliably analyzed in this Application Note by using the 913 pH Meter equipped with a Unitrode easyClean according to ASTM D1512 as well as ISO 787-9 and GB/T 1717-1986.
- TA-044pH value, conductivity and titration in water and soil analysis
The rapid growth of the Earth's population has led to massive increases in the consumption of energy and resources and in the production of consumer products and chemicals. It is estimated that 17 million chemical compounds are currently on the market, of which 100,000 are produced on a large industrial scale. Many of these enter the environment. This leads to a demand for sensitive analytical procedures and high-performance analytical instruments.pH value, conductivity and oxygen requirement are important characteristics in water and soil analysis. The first two of these can be determined rapidly; for the third, the titration that is used is also the one used in numerous single determinations. This article describes several important standard-compliant determinations in water and soil analysis.
- TA-053Measuring pH correctly – Small cause, large effect
With a pH meter, the pH value can easily be measured, read directly, and then immediately archived in accordance with GLP. This article summarizes the most important points to consider considered before taking a pH measurement to verify the accuracy of the results.
- TA-066Webinars: pH Measurement Made Easy
Even though pH measurement is one of the most often used analytical methods in chemistry and is considered rather simple to perform, several factors have to be taken into account to obtain accurate and precise measuring results. The accompanying article for the two webinars on pH measurement summarizes the most important points. In the first part of the webinar the focus lies on the basics of pH measurement. It gives further insights on which parameters have a direct influence on pH measurement and how to control them as well as electrode selection, maintenance and storage. The second part of the webinar targets troubleshooting of common errors, and tips and tricks for a correct pH measurement in matrices other than simple aqueous solutions.
- WP-003pH measurement: Six technical tips
This white paper presents six technical tips that you should consider before taking a pH measurement.
- WP-071Improving the corn to ethanol fermentation process with near-infrared spectroscopy (NIRS)
The fermentation of corn starch to produce ethanol is a complex biochemical process that requires monitoring of many different parameters (e.g., solids, pH, sugar profile, glycerol, lactic and acetic acid, and water and ethanol content). Traditional laboratory analysis using primary methods (e.g. Karl Fischer titration) takes about an hour to complete and is a limiting step for increasing plant capacity and efficiency. As a fast and non-destructive analytical technique, near-infrared spectroscopy (NIRS) can replace routine laboratory analysis, decreasing operating costs and increasing plant efficiency and capacity. This White Paper describes the capabilities of the modern analytical method near-infrared (NIR) spectroscopy for monitoring and improving the fermentation process of corn to ethanol.