You have been redirected to your local version of the requested page

Five myths about online dispersive NIR spectroscopy, FT-NIR, and FT-IR – Part 1

Feb 7, 2022

Article

This article is Part 1 of a series.

Go to

Part 2

Spectroscopy is not just spectroscopy—or is it?

When talking with our project partners and customers, the topic of near-infrared (NIR) spectroscopy is often automatically associated with FT-NIR spectroscopy. So, why isn’t it just called NIR? What is the difference between IR and NIR? Some of you might even wonder: “Can I replace an old IR analyzer with NIR hardware?” And additionally: “Why should I replace the IR with a NIR process analyzer?”

This two-part series aims to explain the differences between these techniques and dispel some myths.

 

Click below to jump directly to a section:

A brief historical overview

Wavelengths

The NIR wavelength range has a long history. As early as the 1880s, organic components were investigated in the NIR range and the strong –OH band relating to the presence of water was discovered as a very important piece of information. Shortly after, measurement of oils from the agricultural industry and investigations into various polymers followed. Some of the first industrial applications of dispersive NIR spectrometers were in the food and agricultural industries. In such applications, parameters including moisture, protein content, and fat content were analyzed quantitatively.

On the other hand, some strong advantages came from using the infrared (IR) wavelength range—high structural sensitivity and specificity—making it possible to obtain precise fingerprints for structural identification.

Historical punch card for assigning various spectral features to acetyl chloride in the infrared wavelength region [1].
Figure 1. Historical punch card for assigning various spectral features to acetyl chloride in the infrared wavelength region [1].