Uygulamalar
- AN-C-193Alkyl amines in scrubber solutions
Harmful industrial flue gases like H2S and CO2 cause corrosion of pipes and damage the environment. Adding the correct amount of amines in scrubber solutions, e.g. ethanolamines and methylamines, will neutralize these gases («gas sweetening»). Non-suppressed cation analysis with direct conductivity detection is a straightforward and robust technique for the quantification of monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), monomethylamine (MMA), dimethylamine (DMA), and trimethylamine (TMA) via ion chromatography. Thanks to the high capacity of the Metrosep C 6 column, large volumes can be injected without compromising the peak shapes. The analytical technique can be used at laboratory scale but also for process analysis.
- AN-NIR-007Near-infrared analysis of polyols: process monitoring in rough environments
During polymerization, real-time determination of hydroxyl and acid numbers of polyols provide important information about molecular weight and the reaction end point. This Application Note sheds light on the practical aspects of process monitoring in a polyol batch process using NIRS methodology. Real-time process monitoring with NIRS is the key to lower production costs and better product quality.
- AN-NIR-008Determination of lignin in wood pulp
This Application Note describes how NIR spectroscopy can be used to determine residual lignin content in wood pulp. Using the major absorbance peaks of both lignin and cellulose in the second derivative spectra, the residual lignin content in wood pulp can be monitored during paper production.
- AN-NIR-010Process monitoring in a butyl acetate production stream using near-infrared spectroscopy
This Application Note describes an NIR method for monitoring the esterification process in butyl acetate production. The developed NIR method shows excellent analytical performance equivalent to that obtainable with more time-consuming GC methods.
- AN-NIR-014Following the progress of pharmaceutical mixing studies using near-infrared spectroscopy
Well-mixed active substances for medications are indispensable in the pharmaceutical industry. This applies not only to the pharmaceutical active ingredient but also for lubricants, binding agents, explosives, oxidants and dyes. Analysis of these active ingredients is expensive; they are also only rarely analyzed as a rule. The progress of the mixing procedures can be followed conveniently with NIR spectroscopy, on the one hand using visual comparisons and on the other by means of spectral algorithms. The progress of mixing processes can be predicted in real time with the help of the spectrum when the latter is used.
- AN-NIR-016Near-infrared spectroscopy for monitoring a single-pot granulator
This Application Note describes the utilization possibilities of a new sensor design that permits, in combination with an NIRS XDS Process Analyzer, the determination of solvent residues in a High-Shear Granulator during the drying phase. This system configuration reduces the scattering of the density distribution of the powder samples so that it is possible, directly in the process, to model the water and solvent content precisely.
- AN-PAN-1001Online analysis of hydrogen sulfide and ammonia in sour water stripper
This Process Application Note details the simultaneous online analysis of H2S and NH3 in sour water which was previously treated in the sour water stripper (SWS). The method includes automatic cleaning and calibration. Fast and accurate results are continuously supplied for process control.
- AN-PAN-1002Online monitoring of cyanide and gold in gold leaching solution
Gold leaching by cyanidation requires precise monitoring of cyanide and gold. Online process analyzers perform such measurements, improving safety and compliance.
- AN-PAN-1003Online analysis of amines concentration in carbon capture plants
Carbon capture systems strip carbon dioxide from flue gases. Online analysis of amines and carbon dioxide enhances amine usage efficiency and reduces operational costs.
- AN-PAN-1004ABC Titration: Analysis of alkali, carbonate, hydroxide, and sulfide in pulping liquors
The Kraft process is the dominant pulping process in the pulp and paper industry with the highest chemical recovery efficiency. In order to run each part of the papermaking process optimally, constant quality checks and analyses should be performed. This Process Application Note illustrates the straightforward online analysis of alkali (active, effective, total titratable alkali (TTA)), carbonate, hydroxide, sulfide and the causticizing degree (CE%) in pulping liquors using a 2060 Process Analyzer from Metrohm Process Analytics.