Aplicações
- 8.000.6047Fully automated potentiometric determination of the hydroxyl number (HN) according to ASTM E1899-08 and DIN 53240-2
Hydroxyl is an important functional group and knowledge of its content is required in many intermediate and end-use products such as polyols, resins, lacquer raw materials and fats (petroleum industry). The test method to be described determines primary and secondary hydroxyl groups. The hydroxyl number is defined as the mg of KOH equivalent to the hydroxyl content of 1 g of sample.The most frequently described method for determining the hydroxyl number is the conversion with acetic anhydride in pyridine with subsequent titration of the acetic acid released: H3C-CO-O-CO-CH3 + R-OH -> R-O-CO-CH3 + CH3COOH. However, this method suffers from the following drawbacks: - The sample must be boiled under reflux for 1 h (long reaction time and laborious, expensive sample handling) - The method cannot be automated - Small hydroxyl numbers cannot be determined exactly - Pyridine has to be used, which is both toxic and foul-smellingBoth standards, ASTM E1899-08 and DIN 53240-2, offer alternative methods that do not require manual sample preparation and therefore can be fully automated: The method suggested in ASTM E1899-08 is based on the reaction of the hydroxyl groups attached to primary and secondary carbon atoms with excess toluene-4-sulfonyl-isocyanate (TSI) to form an acidic carbamate. The latter can then be titrated in a non-aqueous medium with the strong base tetrabutyl- ammonium hydroxide (TBAOH). The method suggested in DIN 53240-2 is based on the catalyzed acetylation of the hydroxyl group. After hydrolysis of the intermediate, the remaining acetic acid is titrated in a non-aqueous medium with alcoholic KOH solution. The present work demonstrates and discusses an easy way to determine the hydroxyl number according to ASTM E1899-08 or DIN 53240-2 with a fully automated titrimetric system for a great variety of industrial oil samples.
- 8.000.6048Fully automated determination of fluoride in blood samples
Sodium fluoride is used as a preservative in biological samples for alcohol analysis. All submitted blood samples, including those taken from vehicle drivers suspected of driving under the influence of liquor, have to be tested for adequate preservation prior to alcohol determination by gas chromatography. This is critical to ensure adequate sample preservation. Inadequate sample preservation may allow glycolysis and/or microorganism growth to produce ethanol.In the past this has been done by direct potentiometric measurement using a fluoride-selective electrode (F ISE), an ion meter and certified NaF standards. The sodium fluoride level was determined manually by dipping the electrode directly into the blood sample. Results were recorded manually. This poster describes two independent automated methods of analysis that allow the minimization of this tedious and time-consuming procedure.In the first one, the fluoride content in a blood aliquot is measured by direct potentiometric measurement after the addition of TISAB and deionized water. The second method employs the titration of the sample aliquot with La(NO3)3 after adding a buffer solution.
- 8.000.6051PC-controlled dosing and liquid handling
The 800 Dosino controlled by tiamo™ or Touch Control can be used universally for dosing and liquid handling tasks in both the analytical laboratory or directly in the synthesis laboratory. This poster looks at three typical liquid handling applications, the synthesis of metal-organic compounds, the preparation of standards, and the determination of pharmaceutical ingredients.
- 8.000.6052Quality assurance of biofuels
This poster provides an overview of ion chromatographic methods combined with inline sample preparation for the determination of anions and water-extractable cations in biofuels. In addition, the determination of the oxidation stability is described.
- 8.000.6053Trace-level determination of perfluorinated compounds in water by suppressed ion chromatography with inline matrix elimination
This poster describes a simple and sensitive method for the determination of perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) in water samples by suppressed conductivity detection. Separation was achieved by isocratic elution on a reversed-phase column thermostated at 35 °C using an aqueous mobile phase containing boric acid and acetonitrile. The PFOA and PFOS content in the water matrix was quantified by direct injection applying a 1000 μL loop. For the concentration range of 2 to 50 μg/mL and 10 to 250 μg/mL, the linear calibration curve for PFOA and PFOS yielded correlation coefficients (R) of 0.99990 and 0.9991, respectively. The relative standard deviations were smaller than 5.8%.The presence of high concentrations of mono and divalent anions such as chloride and sulfate has no significant influence on the determination of the perfluorinated alkyl substances (PFAS). In contrast, the presence of divalent cations, such as calcium and magnesium, which are normally present in water matrices, impairs PFOS recovery. This drawback was overcome by applying Metrohm`s Inline Cation Removal. While the interfering divalent cations are exchanged for non-interfering sodium cations, PFOA and PFOS are directly transferred to the sample loop. After inline cation removal, PFAS recovery in water samples containing 350 mg/mL of Ca2+ and Mg2+ improved from 90…115% to 93…107%.While PFAS determination of low salt-containing water samples is best performed by straightforward direct-injection IC, water rich in alkaline-earth metals are best analyzed using Metrohm`s Inline Cation Removal.
- 8.000.6055Liquid handling applied to automated sample preparation in liquid chromatography
In routine chemical analysis, the predominant challenge involves a higher sample throughput, improved reproducibility, liquid handling flexibility and reduced personnel costs. In response to these requirements, the 872 Extension Module Liquid Handling in combination with the MagIC NetTM software and the well-proven Dosino technology expands the possibilities of inline sample preparation and opens up new fields of application. Among others, the module can be used, together with an optional mixing vessel, for pH adjustments, pre-column derivatizations, or the mixing of solutions.As a representative of an inline sample preparation technique, this poster describes the performance of precise dilutions. By using only one single stable standard solution, multi-point calibration curves can be automatically recorded by diluting a concentrated standard in an external vessel.
- 8.000.6057Simultaneous determination of gamma-hydroxybutyric acid (GHB) and gamma-butyrolactone (GBL) in beverages
Psychoactive gamma-hydroxybutyrate (GHB) and its prodrug gamma-butyrolactone (GBL) are substances that are increasingly abused as date-rape and recreational (party) drugs. Since the non-controlled GBL converts into the illicit GHB both in-vivo and in-vitro, their legal distinction is of crucial importance.For the forensic determination of illegally added GHB and GBL in commonly consumed beverages, this work presents a simple and sensitive method that employs direct-injection ion chromatography combined with spectrophotometric detection. The method allows to trace GHB-GLB interconversion, whether in vivo or in vitro lactone cleavage or intramolecular GHB esterification, and thus complies with pertinent requirements of law enforcement agencies.
- 8.000.6058Analysis of airborne particulate matter by PILS-IC
This study compares air sampling data obtained by a filter-based method including off-line manual filter extraction followed by ion chromatographic analysis with those gained by an automated Particle-Into-Liquid-Sampler coupled to an ion chromatograph (PILS-IC).PILS-IC is a straightforward instrument for aerosol sampling that provides near real-time measurements for long-term unattended operation and is thus an indispensable tool to monitor rapid changes in aerosol particle ionic composition.
- 8.000.6059Determination of hazardous substances in electrical and electronic equipment
The Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC stipulates maximum limits for the hazardous metals cadmium, lead and mercury as well as the hexavalent chromium and the brominated flame retardants in electrical and electronic products. To ensure compliance, reliable analysis methods are required.This poster deals with the wet-chemical determination of trace concentrations of the six RoHS-restricted substances in a wide variety of materials including metals, electrotechnical components, plastics and wires. After sample preparation according to IEC 62321, the metals lead, cadmium and mercury are best determined by anodic stripping voltammetry (ASV) and the flame retardants PBB and PBDE are quantified by direct-injection ion chromatography (IC) using spectrophotometric detection. Chromium(VI) can be determined either by adsorptive stripping voltammetry (AdSV) or IC. Both methods are very sensitive and meet prescribed RoHS limits.
- 8.000.6062Water determination in various plastics
The presence of excessive water in plastics adversely affects the performance of polymeric goods which is why water determination is of crucial importance. This article describes the accurate and straightforward determination of the water content using the Karl Fischer Oven Method in ten different plastic types that are not amenable to direct Karl Fischer titration. The experiments revealed that besides the determination of the oven temperature, sample preparation is one of the most important steps of the analysis, especially in case of hygroscopic plastic samples.