Applications
- 8.000.6005Hyphenated techniques as modern detection systems in ion chromatography
The coupling of highly efficient ion chromatography (IC) to multi-dimensional detectors such as a mass spectrometer (MS) or an inductively coupled plasma mass spectrometer (ICP/MS) significantly increases sensitivity while simultaneously reducing possible matrix interference to the absolute minimum. By means of IC/MS several oxyhalides such as bromate and perchlorate can be detected in the sub-ppb range. Additionally, organic acids can be precisely quantified through mass-based determination even in the presence of high salt matrices. By means of IC-ICP/MS different valence states of the potentially hazardous chromium, arsenic and selenium in the form of inorganic and organic species can be sensitively and unambiguously identified in one single run.
- 8.000.6013Analysis of produced water contaminants by ion chromatography
The analytical challenge treated by the present work consists in detecting sub-ppm quantities of bromide, sulfate, aliphatic monocarboxylic acids and several alkaline earth metals in the presence of very high concentrations of sodium and chloride. Bromide, sulfate, acetate and butyrate can be reliably determined by suppressed conductivity detection. Due to matrix effects, propionate can only be detected qualitatively. This drawback can be overcome by coupling the ion chromatograph (IC) to a mass spectrometric (MS) detector. This results in reduced matrix interferences and significantly enhanced sensitivities. The cations magnesium, barium and strontium are determined by non-suppressed conductivity detection.
- 8.000.6063Post-column chemistry for improved optical absorption detection
UV/VIS detection is one of the most sensitive detection techniques in trace-level chromatography. Sometimes, however, spectrophotometric detection lacks sensitivity, selectivity or reproducibility and chemical derivatizations are required. By using Metrohm`s rugged and versatile flow-through reactor, single- or multi-step derivatizations can be done fully automatically, in either pre- or post-column mode at any temperature between 25…120 °C. The variable reactor geometry allows to adjust the reactor residence time of the reactants according to derivatization kinetics. The flexibility of the reactor is demonstrated by optimizing four widespread post-column techniques: the relatively slow ninhydrin reaction with amino acids and the fast derivatizations of silicate, bromate and chromate(VI).
- AB-066Potentiometric and thermometric determination of boric acid
Boric acid is used in many primary circuits of nuclear power plants, in nickel plating baths, and in the production of optical glasses. Furthermore, boron compounds are found in washing powders and fertilizers. This bulletin describes the potentiometric and thermometric determination of boric acid. The determination also covers further boron compounds, when acidic digestion is applied.
- AB-070Polarographic determination of nitrate in water samples, soil and plant extracts, vegetable juices, meat and sausages, fertilizers, liquid manure, etc.
The photometric determination of nitrate is limited by the fact that the respective methods (salicylic acid, brucine, 2,6-dimethyl phenol, Nesslers reagent after reduction of nitrate to ammonium) are subject to interferences. The direct potentiometric determination using an ion-selective nitrate electrode causes problems in the presence of fairly large amounts of chloride or organic compounds with carboxyl groups. The polarographic method, on the other hand, is not only more rapid, but also practically insensitive to chemical interference, thus ensuring more accurate results. The limit of quantification depends on the matrix of the sample and is approximately 1 mg/L.
- AB-096Determination of mercury at the rotating gold electrode by anodic stripping voltammetry
This Application Bulletin describes the determination of mercury by anodic stripping voltammetry (ASV) at the rotating gold electrode. With a deposition time of 90 s, the calibration curve is linear from 0.4 to 15 μg/L; the limit of quantification is 0.4 μg/L.The method has primarily been drawn up for investigating water samples. After appropriate digestion, the determination of mercury is possible even in samples with a high load of organic substances (wastewater, food and semi-luxuries, biological fluids, pharmaceuticals).
- AB-249Determination of free and residual chlorine based on DIN EN ISO 7393-1 and APHA 4500-Cl
Chlorine is frequently added to drinking water for disinfection. Depending on the reactivity and the concentration of chlorine, toxic disinfection by-products (DBPs) can thereby be released. Therefore, it is necessary to strictly control the chlorine concentration in the drinking water. This Application Bulletin shows how to determine the chlorine concentration according to three standard methods: DIN EN ISO 7939-1, APHA 4500-Cl Method B, and APHA 4500-Cl Method I.
- AB-429Determination of copper in water with the scTRACE Gold
Copper is one of the few metals which is available in nature also in its metallic form. This and the fact that it is rather easy to smelt led to intense use of this metal already in the so-called Copper and Bronze Age. Nowadays, it is more important than ever, because of its good electrical conductivity and its other physical properties. For plants and animals, it is an essential trace element; for bacteria, in contrast, it is highly toxic.This Application Bulletin describes the determination of copper by anodic stripping voltammetry (ASV) using the scTRACE Gold electrode. With a deposition time of 30 s, the limit of detection is about 0.5 μg/L.
- AN-C-060Magnesium, strontium, and barium in produced water (11 g/L sodium)
Determination of magnesium, strontium, and barium in produced water using cation chromatography with direct conductivity detection.
- AN-CIC-033Monitoring PFASs in water sources
AOF (adsorbable organic fluorine) is used to screen for per- and polyfluorinated alkyl substances in aqueous matrices via pyrohydrolytic combustion and ion chromatography.