Applications
- 410000005-BPortable Raman Instrumentation for SERS Applications
For SERS developers and end users of SERS for specific applications to investigate low concetation levels of compounds, the centerpiece of their technological platform must be a Raman setup that provides reliable lab grade performance and is affordable and portable, allowing them to tackle real world problems. The portable i-Raman Plus system coupled with a BAC151 video microscope sampling accessory provides an ideal setup. With the performance and flexibility of use with different laser spot size and power for SERS research.
- 410000030-APortable Transmission Raman Spectroscopy for At-Line Content Uniformity Testing of Pharmaceutical Tablets
Analytical methods to perform CU testing should ideally be fast, noninvasive and achieved with limited sample preparation. Recently, transmission near-infrared (NIR) spectroscopy and transmission Raman spectroscopy have both been explored as alternative methods for rapid and non-destructive on- and at-line CU testing with no sample preparation. Although quick and nondestructive, transmission NIR spectroscopy suffers from poor chemical selectivity and is sensitive to changes in the testing environment. Transmission Raman spectroscopy combined with chemometric modeling is quickly emerging as a valued technique for CU testing due to its high chemical specificity, which is particularly useful when dealing with complex pharmaceutical formulations that contain multiple components.
- 410000031-ARapid Field Testing of Ecstasy Pills Using a 1064-nm Handheld Raman Device
B&W Tek’s TacticID®-1064 is a field-ready handheld Raman system utilizing 1064-nm wavelength laser excitation. Designed for forensic analysis by safety personnel, first responders, and law enforcement personnel, the TacticID-1064 significantly reduces fluorescence, allowing users to identify tough street samples such as ecstasy tablets in a variety of colors and mixture forms.
- 410000032-APros and Cons of Using Correlation Versus Multivariate Algorithms for Material Identification via Handheld Spectroscopy
The two most common mathematical representations used with handheld Raman spectroscopy as decision-making tools for spectroscopic data: Hit Quality Index (HQI) and significance level (p-value) are presented.
- 410000040-ASampling Guidelines for Handheld Raman Measurements – What You Need To Know
Handheld Raman is used for raw material testing of different sample types and forms. The use of optimized sampling accessories enhances the utility of handheld Raman without compromising data quality or complicating testing.
- 410000061-AIdentification of Starting Materials inPharmaceutical industry using STRam®-1064
100% starting materials identification testing is one of the FDA’s directives as per 211.84 for FDA regulated industries such as Pharmaceutical, Vaccines, Cosmetics, Tobacco, Animal veterinary products, Food, etc. STRam®-1064 is a Raman analyzer uniquely suited for this purpose. It measures samples through thick packaging materials such as plastics, multilayer kraft paper sacks, and HDPE containers. A long wavelength laser is used to suppress fluorescence. The ID algorithm isolates the sample signature by subtracting that of the packaging material and compares that with library spectra to achieve identification.
- 8.000.6045Trace-level aliphatic amines in cationic pharmaceutical ingredients
The analytical challenge treated by the present work consists in detecting sub-ppb concentrations of low-molecular-weight amines in the presence of strongly retained cationic drugs by using ion chromatography (IC) with upstream inline coupled-column matrix elimination (CCME). In contrast to direct-injection IC, where the late elution of strongly retained drugs requires eluents with added acetonitrile, the CCME technique uses two preconcentration columns in series. In an «inverse matrix elimination step, cationic drug and target amines are trapped on a high-capacity and a very-high-capacity preconcentration column, respectively. During amine determination, a rinsing solution flushes the drug to waste. This significantly shortens the analysis time and improves sensitivity as well as selectivity. Besides the determination of monomethylamine in Nebivolol hydrochloride discussed here, the CCME technique is a promising tool for detecting further low-molecular-weight amines in a wide range of drugs.
- 8.000.6078Water determination in pharmaceuticals using an automated Karl Fischer Oven Technique
The poster describes the water determination in pharmaceuticals using the Karl Fischer oven technique.
- 8.000.6102Ion chromatography – the all-rounder for pharmaceutical analysis
Pharmaceutical analysis guarantees drug safety by providing information on the identity, content, quality, purity, and stability of pharmaceutical products using analytical chemistry. Ion chromatography (IC) offers a broad range of pharmacopeia-compliant applications for quality control, monitoring, and improving drug manufacturing.As a very accurate and versatile technique, IC meets the requirements of many pharmaceutical applications. IC is a USP-accepted standard method for the determination of active pharmaceutical ingredients (APIs), excipients, impurities,pharmaceutical solutions as well as pharmaceutical starting materials, finished pharmaceutical products (FPPs) and even body fluids.This poster describes some typical examples.
- 8.000.6104USP Monograph Modernization Initiative: Chemical Medicines Assay by Potentiometric Titration
This poster presented jointly with USP at AAPS meeting shows the new potentiometric titration assay method for potassium bicarbonate and potassium carbonate assay which offers selectivity and fulfills all USP method validation requirements as per USP General Chapter < 1225>. Potentiometric titration based assay determination is faster and easy to use compared to the chromatographic techniques and can be easily automated to fulfill high throughput needs. Autotitration combined with appropriate equivalence point detection methods not only eliminates manual errors, but fulfills data integrity and 21 CFR 11 requirements, which makes the pharmaceutical QA/QC workflow easier.