Applications
- 410000021-APortable Raman Spectroscopy in Forensics: Explosive Residues and Inflammable Liquids
The suitability and potential of Raman spectroscopy in forensics is widely known by forensic specialists who use it in the laboratory to identify a wide variety of compounds including explosives, drugs, paints, textile fibers and inks. However, the use of laboratory-grade Raman outside the laboratory, such as for in‐situ analysis at a crime scene, was something thought possible only in forensic‐fiction until just a few years ago. Fortunately, modern portable Raman spectrometers are commercially available, and their instrumental features are comparable to Raman lab‐ spectrometers.To prove this, some extraordinarily demanding and challenging applications, in which an in‐situ standoff identification of samples might be advisable, were tested.
- 410000024-BRaman solution suite for forensics applications
Law enforcement personnel, laboratory technicians, crime scene investigators and many others face a significant challenge for identification of materials in a forensic investigation.Traditionally, technicians used multiple forms of identification in order to collect results from various forms of forensic samples. Although certain technologies are ideal for precise laboratory identification, many technologies, such as Raman spectroscopy, can be successfully used for identification of multiple forensic sample types either directly in the field or in the lab. Raman spectroscopy is classified as a Category A analytical method by the Scientific Working Group for the Analysis of Seized Drugs (SWGDRUG; Version 7.1, 2016).
- 8.000.6033Analysis of energetic materials in various water and soil samples using HPLC and LC-MS
In modern days, a new breed of energetic (explosive) materials is emerging. Traditional aromatic nitrates are still in use, but there is dire need of analytical techniques for energetic materials in the chemical class of peroxides, azo etc. This presentation will demonstrate the use of a modern HPLC system with traditional detector (DAD) and also coupled with mass spectrometry for the analysis of abovementioned various classes of energetic materials.
- 8.000.6101Analysis of Anions and Oxoanions using Ion Chromatography Mass Spectrometry (IC-MS)
Ion chromatography tackles difficult separation problems of various ionic species and typically works with conductivity detection. Mass detection as a secondary independent detector significantly lowers the detection limits and confirms the identity of analytes even when coeluting. This poster describes how the combination of IC-MS and automated sample preparation techniques cope with the analysis of anions and oxoanions in challenging matrices such as soil or explosion residues.
- AN-K-001Water in potassium chlorate (KClO3)
The water content of potassium chlorate is determined according to Karl Fischer using the oven method (300 °C).
- AN-K-009Water in explosive pellets
The water content of explosive pellets is determined according to Karl Fischer after extraction with methanol.
- AN-K-013Water in organic peroxides
The water content of organic peroxides is determined according to Karl Fischer using two-component reagents. To prevent any unwanted side reactions, the determinations are carried out at -20 °C.
- AN-M-002Chlorite, chlorate, and perchlorate in explosion residue using IC/MS coupling
Determination of chlorite, chlorate, and perchlorate in explosion residue using anion chromatography with conductivity and MS detection in tandem.
- AN-S-128Chlorate, nitrate, and perchlorate in firecracker powder
Determination of chlorate, nitrate, and perchlorate in firecracker powder using anion chromatography with conductivity detection after chemical suppression.
- AN-S-147Ten anions in an extract of explosives
Determination of chloride, nitrite, cyanate, azide, nitrate, chlorate, sulfate, thiocyanate, thiosulfate, and perchlorate in an extract of explosives using anion chromatography with conductivity detection after chemical suppression.