Applications
- 8.000.6109USP Modernization Initiative: Iodide Assay by Ion Chromatography
Potassium iodide (KI) is used to treat overactive thyroid and to protect the thyroid gland from the effects of radiation from inhaled or swallowed radioactive iodine. Currently, in the USP Potassium Iodide Monograph, iodide identification is performed by wet chemistry and assay by manual titration, which has a history of reduced precision and accuracy. As part of USP’s global monograph modernization initiative, an alternative selective and sensitive method was developed and validated – ion chromatography (IC). The proposed IC method can also be used for the identification test as an alternative to wet chemistry.
- 8.000.6110Fluoride in OTC Products by Ion Chromatography
Fluoride is commonly used in dental products to help prevent tooth decay. When fluoride is present in high concentrations, these products are regulated by 21 CFR 355. Three fluoride compounds used in over the counter (OTC) anti‐cavity dental products are sodium fluoride, stannous fluoride and sodium monofluorophosphate (MFP). The assay of fluoride in these active ingredients and finished formulations are determined by manual titration, or by ion‐selective electrodes. As a part of USP’s global monograph modernization initiative, an alternative selective and sensitive method has been developed and validated – ion chromatography (IC). The proposed IC method can also be used for the identification test as an alternative to the wet chemistry method.
- 8.000.6111Fully Automated Determination of pH Using Flow Cell Technology
A high throughput automated system was developed to determine pH of culture media using a pH module equipped with an external flow cell. A custom septum-piercing, vented needle was developed to accommodate the shape and size of the customer sample vials. For this application, both accurate and precise pH measurements were required. The data presented in this document was collected by a customer as a part of their validation process and was provided for use with their consent.
- 8.000.6112Technical Poster: Haloacetic acids in water
LC-MS/MS quantification methods are commonly used to determine trace levels of organic compounds. However, highly polar reversed phases (RPs) lack sufficient retention for very polar compounds, or they fail for charged organics. Separation using ion chromatography (IC) and subsequent MS/MS detection is an innovative alternative approach that combines the fast elution and flexibility of the IC system with the excellent resolution and high sensitivity of the MS/MS detector. This poster presents a fast, robust and reliable IC-MS/MS method for the detection of HAAs and other ionic analytes using the high-end MS/MS system QTRAP 6500+ from SCIEX coupled to a the 940 Professional IC Vario One SeS/PP/HPG instrument. This analytical setup is able to identify and quantify the presence of HAAs at trace levels with LLODs between 0.02 μg/mL and 0.2 μg/L on a single HAA. This capability easily fulfills the sensitivity requirements specified in EU Drinking Water Directive, which specifies a maximum residue level (MRL) of 60 mg/mL for the sum of monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, monobromoacetic acid and dibromoacetic acid present in the representative sample.
- 8.000.6113Determination of Trace Level Lead (Pb) in Drinking Water Using a Mercury-Free Electrode and a Portable InstrumentAccording to the Requirements of USEPA Lead and Copper Rule
Lead is known to be highly toxic, and lead salts are easily resorbed by humans. Cases of chronic lead poisoning caused by lead metal used in the water piping system are well known. Therefore, the control of drinking water for lead content is of utmost importance. The Lead and Copper Rule (LCR) published by the USEPA (United States Environmental Protection Agency) states an action limit of 15 μg/L lead for drinking water. Using a portable voltammetric instrument, lead can be determined in these concentrations directly at the point of sampling.
- AB-004Biamperometric titration method for the determination of antimony in lead
An automatic titration method is described using biamperometric endpoint indication for the determination of antimony in antimony-alloyed cable lead (approx. 1% Sb). A 0.01 mol/L KBrO3 solution is used as the titrant.
- AB-011Determination of zinc by bi-amperometric titration with potassium hexacyanoferrate(II)
Zinc, such as that occurring as a constituent of light alloys, can be determined by precipitation titration with potentiometric endpoint indication. The determination of zinc in the presence of cadmium is also possible.2 K4[Fe(CN)6] + 3 ZnCl2 → K2Zn3[Fe(CN)6]2 + 6 KCl
- AB-014Determination of nickel by potentiometric titration
A potentiometric method for the determination of nickel in gold and silver electroplating baths is described. The titration is carried out with KCN. Gold and silver are removed before titration by a reduction process. It is also possible to determine nickel in steel alloys, etc. (see the literature reference).Ni2+ + 4 KCN + 2NH4+ → (NH4)2[Ni(CN)4] + 4 K+
- AB-016Routine determination of copper in brass, bronze, German silver and in electroplating baths
A routine method for the determination of copper is described. After dissolving the sample and adding a KI/KCNS solution, the released iodine is back-titrated with thiosulfate. The endpoint indication is potentiometric.
- AB-017Potentiometric titration of calcium carbonate in raw meal from the cement industry
A method for the potentiometric determination of CaCO3 in cement raw meal is described, in which the accurately weighed-out sample is treated with HCl, heated to boiling and the excess HCl is then back-titrated with NaOH.