Applications
- 410000053-AQuantitative Analysis of a Water-soluble Polymer Using the i-Raman EX Spectrometer
Quantitation of the functionalization of a water-soluble polymer was achieved using a portable Raman spectrometer. The Raman spectrum provides strong, unique bands for both the initial and fully reacted polymer. This enables development of a simple, robust quantitative analysis of the percent polymer functionalization. This method is now routinely used in a manufacturing plant's quality control laboratory.
- 8.000.6017Determination of sulfide in mining leachates
Metal precipitation and cyanide recovery in the SART process (sulfidization, acidification, recycling, thickening) depend to a great extent on the sulfide concentration. Among the flow injection analysis methods coupled to wet-chemical analyzers, the combination of a gas diffusion cell with an ion chromatograph (IC) plus subsequent direct spectrophotometric detection has proven to be one of the most convenient methods of sulfide analysis.This paper deals with the determination of sulfide anions via the coupling of a gas diffusion cell to an IC with subsequent spectrophotometric detection.
- 8.000.6053Trace-level determination of perfluorinated compounds in water by suppressed ion chromatography with inline matrix elimination
This poster describes a simple and sensitive method for the determination of perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) in water samples by suppressed conductivity detection. Separation was achieved by isocratic elution on a reversed-phase column thermostated at 35 °C using an aqueous mobile phase containing boric acid and acetonitrile. The PFOA and PFOS content in the water matrix was quantified by direct injection applying a 1000 μL loop. For the concentration range of 2 to 50 μg/mL and 10 to 250 μg/mL, the linear calibration curve for PFOA and PFOS yielded correlation coefficients (R) of 0.99990 and 0.9991, respectively. The relative standard deviations were smaller than 5.8%.The presence of high concentrations of mono and divalent anions such as chloride and sulfate has no significant influence on the determination of the perfluorinated alkyl substances (PFAS). In contrast, the presence of divalent cations, such as calcium and magnesium, which are normally present in water matrices, impairs PFOS recovery. This drawback was overcome by applying Metrohm`s Inline Cation Removal. While the interfering divalent cations are exchanged for non-interfering sodium cations, PFOA and PFOS are directly transferred to the sample loop. After inline cation removal, PFAS recovery in water samples containing 350 mg/mL of Ca2+ and Mg2+ improved from 90…115% to 93…107%.While PFAS determination of low salt-containing water samples is best performed by straightforward direct-injection IC, water rich in alkaline-earth metals are best analyzed using Metrohm`s Inline Cation Removal.
- 8.000.6063Post-column chemistry for improved optical absorption detection
UV/VIS detection is one of the most sensitive detection techniques in trace-level chromatography. Sometimes, however, spectrophotometric detection lacks sensitivity, selectivity or reproducibility and chemical derivatizations are required. By using Metrohm`s rugged and versatile flow-through reactor, single- or multi-step derivatizations can be done fully automatically, in either pre- or post-column mode at any temperature between 25…120 °C. The variable reactor geometry allows to adjust the reactor residence time of the reactants according to derivatization kinetics. The flexibility of the reactor is demonstrated by optimizing four widespread post-column techniques: the relatively slow ninhydrin reaction with amino acids and the fast derivatizations of silicate, bromate and chromate(VI).
- 8.000.6074Influence of pH, temperature, and molybdate concentration on the performance of the triiodide method for the trace-level determination of bromate (EPA 326)
This poster discusses results showing the influence of pH, temperature of the post-column reactor, eluent composition, and iodide concentration on the sensitivity of the triiodide method.
- AB-046Potentiometric determination of cyanide
The determination of cyanide is very important not only in electroplating baths and when decontaminating wastewater but, due to its high toxicity, also in water samples in general. Concentrations of 0.05 mg/L CN- can already be lethal for fish.This Bulletin describes the determination of cyanide in samples of different concentrations by potentiometric titration.Chemical reactions:2 CN- + Ag+ → [Ag(CN)2]-[Ag(CN)2]- + Ag+ → 2 AgCN
- AB-070Polarographic determination of nitrate in water samples, soil and plant extracts, vegetable juices, meat and sausages, fertilizers, liquid manure, etc.
The photometric determination of nitrate is limited by the fact that the respective methods (salicylic acid, brucine, 2,6-dimethyl phenol, Nesslers reagent after reduction of nitrate to ammonium) are subject to interferences. The direct potentiometric determination using an ion-selective nitrate electrode causes problems in the presence of fairly large amounts of chloride or organic compounds with carboxyl groups. The polarographic method, on the other hand, is not only more rapid, but also practically insensitive to chemical interference, thus ensuring more accurate results. The limit of quantification depends on the matrix of the sample and is approximately 1 mg/L.
- AB-074Determination of antimony, bismuth, and copper by anodic stripping voltammetry
This Application Bulletin describes the voltammetric determination of the elements antimony, bismuth, and copper. The limit of detection for the three elements is 0.5 ... 1 µg/L.
- AB-083Determination of sodium with the ion-selective electrode
The determination of sodium with the sodium ISE represents a selective, rapid, accurate, and favorably-priced method which is described in this Bulletin. Examples are used to show how determinations can be carried out with the 692 pH/Ion Meter using either direct measurement or the standard addition technique. The sodium concentration has been determined in standard solutions, water samples (tap water, mineral water, wastewater), foodstuffs (spinach, baby food), and urine. The construction, working principles, and areas of application of the two Metrohm ion-selective sodium electrodes – the 6.0501.100 Glass membrane ISE and the 6.0508.100 Polymer membrane ISE – are explained in detail.
- AB-096Determination of mercury at the rotating gold electrode by anodic stripping voltammetry
This Application Bulletin describes the determination of mercury by anodic stripping voltammetry (ASV) at the rotating gold electrode. With a deposition time of 90 s, the calibration curve is linear from 0.4 to 15 μg/L; the limit of quantification is 0.4 μg/L.The method has primarily been drawn up for investigating water samples. After appropriate digestion, the determination of mercury is possible even in samples with a high load of organic substances (wastewater, food and semi-luxuries, biological fluids, pharmaceuticals).
- AB-101Complexometric titrations with the Cu ISE
This Bulletin describes the complexometric potentiometric titration of metal ions. An ion-selective copper electrode is used to indicate the endpoint of the titration. Since this electrode does not respond directly to complexing agents, the corresponding Cu complex is added to the solution. With the described electrode, it is possible to determine water hardness and to analyze metal concentrations in electroplating baths, metal salts, minerals, and ores. The following metal ions have been determined: Al3+, Ba2+, Bi3+, Ca2+, Co2+, Fe3+, Mg2+, Ni2+, Pb2+, Sr2+, and Zn2+.
- AB-110Determination of free cyanide by polarography
This Application Bulletin describes a polarographic method for the determination of cyanide that allows to determine free cyanide fast and accurately. The determination also succeeds in solutions containing sulfides, where other methods fail. Cyanide concentrations in the range b(CN–) = 0.01...10 mg/L cause no problems. Interference caused by anions and complexed cyanides has been investigated.
- AB-114Determination of copper, nickel, cobalt, zinc, and iron in a single operation by polarography
Cu2+, Co2+, Ni2+, Zn2+, and Fe2+/Fe3+ are determined simultaneously. Interference due to the presence of other metals is mentioned, and methods given to eliminate it. The threshold of determination is ρ = 20 µg/L for Co and Ni, and ρ = 50 µg/L each for Cu, Zn, and Fe.
- AB-116Determination of chromium in small quantities by polarography and adsorptive stripping voltammetry after digestion
This Application Bulletin describes methods for the polarographic and voltammetric determination of small quantities of chromium in water, effluent water and biological samples. Methods for the sample preparation for various matrices are given.
- AB-119Potentiometric determination of trace bromide and iodide in chlorides
Bromide is removed from the sample as BrCN by distillation. The BrCN is absorbed in sodium hydroxide solution and decomposed with concentrated sulfuric acid, then the released bromide ions are determined by potentiometric titration with silver nitrate solution. Iodide does not interfere with the determination.Iodide is oxidized to iodate by hypobromite. After destruction of the excess hypobromite, the potentiometric titration (of the iodine released from iodate) is carried out with sodium thiosulfate solution. Bromide does not interfere, even in great excess.The described methods allow the determination of bromide and iodide in the presence of a large excess of chloride (e.g., in brine, seawater, sodium chloride, etc.).
- AB-121Determination of nitrate with the ion-selective electrode
It has been known for years that consuming too much nitrates from foodstuffs can result in cyanosis, particularly for small children and susceptible adults. According to the WHO standard, the hazard level lies at a mass concentration c(NO3-) ≥ 50 mg/L. However, more recent studies have shown that when nitrate concentrations in the human body are too high, they can (via nitrite) result in the formation of carcinogenic and even more hazardous nitrosamines.Known photometric methods for the determination of the nitrate anion are time-consuming and prone to a wide range of interferences. With nitrate analysis continually increasing in importance, the demand for a selective, rapid, and relatively accurate method has also increased. Such a method is described in this Application Bulletin. The Appendix contains a cselection of application examples where nitrate concentrations have been determined in water samples, soil extracts, fertilizers, vegetables, and beverages.
- AB-123Determination of manganese in water samples by anodic stripping voltammetry
"A sensitive methods to determine manganese is described. It is primarily suitable for the investigation of ground, drinking and surface waters, in which the concentration of manganese is important. The method can naturally also be used for trace analysis in other matrices.Manganese is determined in an alkaline borate buffer by the anodic stripping voltammetry (ASV). Interference by intermetallic compounds is prevented by the addition of zinc ions in the sample. The limit of determination lies at b(Mn) = 2 µg/L."
- AB-125Simultaneous determination of calcium, magnesium, and alkalinity by complexometric titration with potentiometric or photometric indication in water and beverage samples
This bulletin describes the determination of calcium, magnesium, and alkalinity in water by complexometric titration with EDTA as titrant. It is grouped into two parts, the potentiometric determination and the photometric determination.There are multiple definitions of the different types of water hardness. In this Application Bulletin, the following definitions are used: alkalinity, calcium hardness, magnesium hardness, total hardness, and permanent hardness. Explanations of these definitions and other expressions are provided in the Appendix.Determination of alkalinity during the photometric part is carried out in a separate acid-base titration before the complexometric titration of calcium and magnesium in water. Permanent hardness can be calculated from these values. The determination of calcium and magnesium in beverages (fruit and vegetable juices, wine) is also described.The photometric part includes the determinations of total and calcium hardness and thereby indirectly magnesium hardness using Eriochrome Black T and calconcarboxylic acid as indicators (in accordance with DIN 38406-3).
- AB-127Polarographic determination of nitrite in waters, meat and sausage products
Nitrite can be determined polarographically after its conversion to diphenylnitrosamine (C6H5)2NNO. Potassium thiocyanate is used as a catalyst in order for the conversion to proceed rapidly and quantitatively. The reaction takes place in acid solution at a pH value of approx. 1.5. The limit of quantification is 5 μg/L NO2-.
- AB-129Potentiometric determination of orthophosphates, metaphosphates, and polyphosphates
After acid digestion, the sample solution is neutralized with sodium hydroxide to form sodium dihydrogen phosphate. An excess of lanthanum nitrate is added and the released nitric acid is then titrated with sodium hydroxide solution.NaH2PO4 + La(NO3)3 → LaPO4 + 2 HNO3 + NaNO3This determination method is suitable for higher phosphate concentrations.
- AB-130Chloride titrations with potentiometric indication
Potentiometric titration is an accurate method for determining chloride content. For detailed instructions and troubleshooting tips, download our Application Bulletin.
- AB-131Determination of aluminum by adsorptive stripping voltammetry
This Application Bulletin describes a voltammetric method for the determination of aluminum in water samples, dialysis solutions, sodium chloride solutions and digestion solutions (e.g. of lyophilisates). The method utilizes the complexation of the Al3+ ion by Calcon (Eriochrome blue black R). The formed complex can easily be reduced electrochemically at 60 °C. The limit of quantitation depends on the purity of the reagents used and is approx. 5 µg/L.
- AB-146Determination of trace amounts of molybdenum (or tungsten) in water by polarography
"Molybdenum is an essential trace element for plant growth. Since it occurs in natural waters only in trace amount, a very sensitive method of determination is needed. Using the following polarographic method, it is possible to determine 5·10-10 mol/L resp. 50 ng/L.The principle of the method is based on the reaction between the molybdate ion MoO42- and the complexing agent 8-hydroxy-7-iodo-quinoline-5-sulfonic acid (H2L) to form a MoO2L22- complex, which is adsorbed on the mercury electrode. The adsorbed Mo(VI) is reduced electrochemically to the Mo(V) complex. The hydrogen ions present in the solution oxidize Mo(V) again spontaneously to form the Mo(VI) complex, which is thus newly available for electrochemical reduction. This catalytic reaction is the reason for the high sensitivity of the method.Tungsten W(VI) exhibits practically the same electrochemical behavior as molybdenum, but is not described in detail in this Application Bulletin."
- AB-176Determination of lead and tin by anodic stripping voltammetry
In most electrolytes the peak potentials of lead and tin are so close together, that a voltammetric determination is impossible. Difficulties occur especially if one of the metals is present in excess.Method 1 describes the determination of Pb and Sn. Anodic stripping voltammetry (ASV) is used under addition of cetyltrimethylammonium bromide. This method is used when:• one is mainly interested in Pb• Pb is in excess• Sn/Pb ratio is not higher than 200:1According to method 1, Sn and Pb can be determined simultaneously if the difference in the concentrations is not too high and Cd is absent.Method 2 is applied when traces of Sn and Pb are found or interfering TI and/or Cd ions are present. This method also uses DPASV in an oxalate buffer with methylene blue addition.
- AB-178Fully automated analysis of water samples
The determination of the physical and chemical parameters as electrical conductivity, pH value, p and m value (alkalinity), chloride content, the calcium and magnesium hardness, the total hardness, as well as fluoride content are necessary for evaluating the water quality. This bulletin describes how to determine the above mentioned parameters in a single analytical run.Further important parameters in water analysis are the permanganate index (PMI) and the chemical oxygen deman (COD). Therefore, this Bulletin additionally describes the fully automated determination of the PMI according to EN ISO 8467 as well as the determination of the COD according to DIN 38409-44.
- AB-186Determination of aluminum in water samples by adsorptive voltammetry
This Bulletin describes the voltammetric determination of aluminum in water samples down to a concentration of 1 μg/L. An aluminum complex is formed with alizarin red S (DASA) and enriched at the HMDE. The following determination employs differential pulse adsorptive stripping voltammetry (DP-AdSV). Disturbing Zn ions are eliminated by addition of CaEDTA.
- AB-196Determination of formaldehyde by polarography
Formaldehyde can be determined reductively at the DME. Depending on the sample composition it may be possible to determine the formaldehyde directly in the sample. If interferences occur then sample preparation may be necessary, e.g. absorption, extraction, or distillation.Two methods are described. In the first method formaldehyde is reduced directly in alkaline solution. Higher concentrations of alkaline or alkaline earth metals interfere. In such cases the second method can be applied. Formaldehyde is derivatized with hydrazine forming the hydrazone, which can be measured polarographically in acidic solution.
- AB-199Determination of sulfide and sulfite by polarography
Sulfide and sulfite can be determined polarographically without any problems. For sulfide, polarography is performed in an alkaline solution, for sulfite in a slightly acidic primary solution. The method is suitable for the analysis of pharmaceuticals (infusion solutions), wastewater/flue gas water, photographic solutions, etc.
- AB-207Determination of silver by anodic stripping voltammetry at the carbon RDE
This Application Bulletin describes the stripping analysis of Ag at the rotating disk electrode (RDE) with glassy carbon tip (GC) or Ultra Trace graphite tip. In routine operation, the determination limit lies at approx. 10 μg/L Ag, with careful work 5 μg/L Ag can be obtained. After appropriate digestion, silver determination is also possible with samples containing a relatively high proportion of organic substances (e.g. wine, foodstuffs etc.). The method has been developed primarily for water samples (well, ground and wastewater, desilvering solutions of the photographic industry).
- AB-220Determination of platinum and rhodium in the ultratrace range by adsorptive stripping voltammetry
This Application Bulletin describes …
- AB-226Determination of arsenic by stripping voltammetry at the rotating gold electrode
This Bulletin describes the determination of arsenic by anodic stripping voltammetry (ASV) at the rotating gold electrode. A determination limit of 0.5 μg/L can be achieved with 10 mL sample solution. A differentiation between the As(III) concentration and the total arsenic concentration can be made by appropriate selection of the deposition potential. The analyses are performed with a special gold electrode whose active surface is located laterally; c(HCl) = 5 mol/L is used as supporting electrolyte. For the determination of the total arsenic content, As(III) and As(V) are reduced at -1200 mV by nascent hydrogen to As0, which is preconcentrated on the electrode surface. If the deposition is carried out at -200 mV then only As(III) is reduced; this allows the differentiation between total arsenic and As(III). During the subsequent voltammetric determination the preconcentrated As0 is again oxidized to As(III).
- AB-230Potentiometric determination of nonionic surfactants based on polyoxyethylene adducts with the NIO electrode
The titrimetric determination of nonionic surfactants on the basis of polyoxyethylene adducts (POE adducts) is described in the Bulletin. The basis for the determination is the transfer of the nonionic surfactant into a pseudo-cation compound and its precipitation titration with sodium tetraphenylborate (Na-TPB). The NIO electrode is used for the indication of the potentiometric titration. This Bulletin describes determinations in raw products, formulations and wastewater and draws attention to special features, possibilities, limits and disruptions.
- AB-241Determination of cadmium and lead by anodic stripping voltammetry at a mercury film electrode
This Application Bulletin describes the determination of cadmium and lead at a mercury film electrode (MFE) by anodic stripping voltammetry (ASV). The mercury film is plated ex situ on a glassy carbon electrode and can be used for up to one day. With a deposition time of 30 s, the limit of detection is ß(Cd2+) = 0.02 µg/L and ß(Pb2+) = 0.05 µg/L. The linear working range for both elements goes up to approx. 50 μg/L using the same deposition time.
- AB-242Determination of tungsten by anodic stripping voltammetry at the Ultra Trace graphite RDE
The method described allows the determination of W(VI) traces in the range 0.2 to 50 µg/L (ppb). Traces of organic compounds present in the samples (e.g. natural waters) interfere. They have to be removed by UV digestion (e.g. 705 UV Digester). Interference by Fe(III) up to a concentration of 100 mg/L is eliminated by reduction to Fe(lI) with ascorbic acid. If the amount of Cu(II) in the sample exceeds the amount of W(VI) by a factor of 200 or more, the Cu ions have to be bound with thiourea. Moreover, the concentration of Cu(II) should not exceed 5 mg/L. The determination is made by adsorptive stripping analysis in the DP mode.
- AB-243Determination of chromium by adsorptive stripping voltammetry at the Ultra Trace graphite RDE
The method describes the determination of Cr traces in a range between 1 ... 250 μg/L. The method is based on the adsorption of a Cr(lll)-diphenylcarbazonate complex on the Ultra Trace graphite rotating disk electrode (RDE). Organic compounds present in samples (e.g. natural waters) have a strong interfering effect. So they have to be removed by e.g. UV digestion. The determination is made by adsorptive stripping voltammetry in the DC (direct current) measuring mode. Purging with nitrogen is not necessary. The determinations work well also in high salt concentration solutions.
- AB-254Determination of zinc, cadmium and lead by anodic stripping voltammetry at a mercury film electrode
This Application Bulletin describes the determination of zinc at a mercury film electrode (MFE). Zinc can also be determined simultaneously with cadmium and lead. The determination of copper at the MFE is not possible. The mercury film is plated ex-situ on a glassy carbon electrode and can be used for half a day up to one day.Zinc can be determined at the mercury film electrode by anodic stripping voltammetry (ASV). The presence of copper, which is naturally present in many samples, affects the determination of zinc due to the formation of an intermetallic compound. As a result the determined concentrations of zinc are too low. The addition of gallium can eliminate the interference to a certain extent since the intermetallic complex of gallium and copper is more stable than the complex of zinc and copper.With a deposition time of 10 s, the limit of detection is β(Zn2+) = 0.15 μg/L. The linear working range goes up to approx. 300 μg/L.With the deposition time of 10 s the method is suitable for samples between 10 μg/L and 150 μg/L Zn content. For samples with lower concentrations the results are more reliable if the deposition time is increased to e.g. 30 s. Samples with higher concentrations have to be diluted.
- AB-266Determination of titanium by adsorptive stripping voltammetry
This Application Bulletin describes the determination of titanium by adsorptive stripping voltammetry (AdSV) using mandelic acid as complexing agent. The method is suitable for the analysis of ground, drinking, sea, surface and cooling waters, in which the concentration of titanium is of importance. The methods can, of course, also be used for the trace analysis in other matrices.The limit of detection is approx. 0.5 µg/L.
- AB-317Determination of iron in the µg/L-range by polarography
This Application Bulletin describes two methods for the determination of iron at the Multi Mode Electrode.Method 1, the polarographic determination at the DME, is recommended for concentrations of β(Fe) > 200 μg/L. For this method the linear range is up to β(Fe) = 800 μg/L.For concentrations < 200 μg/LMethod 2, the voltammetric determination at the HMDE, is to be preferred. The detection limit for this method is β(Fe) = 2 μg/L, the limit of quantification is β(Fe) = 6 μg/L. The sensitivity of the method cannot be increased by deposition.Iron(II) and iron(III) have the same sensitivity for both methods.These methods have been elaborated for the determination of iron in water samples. For water samples with high calcium and magnesium concentrations such as, for example, seawater, a slightly modified electrolyte is used in order to prevent precipitation of the corresponding metal hydroxides. The methods can also be used for samples with organic loading (wastewater, beverages, biological fluids, pharmaceutical or crude oil products) after appropriate digestion.
- AB-416Determination of arsenic in water with the scTRACE Gold
This Application Bulletin describes the determination of arsenic in water samples by anodic stripping voltammetry using the scTRACE Gold sensor. This method makes it possible to distinguish between As(total) and As(III). With a deposition time of 60 s, the limit of detection for As(total) is 0.9 µg/L, for As(III) it is 0.3 µg/L.
- AB-422Determination of mercury in water using scTRACE Gold
This Application Bulletin describes the determination of inorganic mercury in water samples by anodic stripping voltammetry using the scTRACE Gold sensor. With a deposition time of 90 s, calibration is linear up to a concentration of 30 µg/L; the limit of detection lies at 0.5 µg/L.
- AB-430Determination of uranium by adsorptive stripping voltammetry according to DIN 38406-17
This Application Bulletin describes the methods for the determination of uranium by adsorptive stripping voltammetry (AdSV) according to DIN 38406 part 17. The method is suitable for the analysis of ground, drinking, sea, surface and cooling waters, in which the concentration of uranium is of importance. The methods can, of course, also be used for the trace analysis in other matrices.Uranium is determined as chloranilic acid complex. The limit of detection in samples with low chloride concentration is about 50 ng/L and in seawater about 1 µg/L. Matrices with high chloride content can only be analyzed after reduction of the chloride concentration by means of a sulfate-loaded ion exchanger.
- AB-431Determination of iron, copper and vanadium by adsorptive stripping voltammetry
This Application Bulletin describes the voltammetric determination of the elements iron, copper and vanadium. Fe as well as Cu and V can be determined as catechol complex at the HMDE by adsorptive stripping voltammetry (AdSV). Fe(II) and Fe(III) are determined as Fe(total) with the same sensitivity for both species in either phosphate buffer or PIPES electrolyte. Cu and V can be determined in PIPES buffer.The methods are primarily suitable for the investigation of ground, drinking and surface waters, in which the concentration of these metals is important. But the methods can naturally also be used for trace analysis in other matrices.The limit of detection for all three elements in PIPES buffer is 0.5 ... 1 µg/L, for iron in phosphate buffer it is approx. 5 µg/L.
- AB-433Determination of lead in water with the scTRACE Gold modified with a silver film
Lead is known to be highly toxic and lead salts are easily absorbed by creatures. By interfering with enzyme reactions,lead can affect all parts of the human body. It can cause severe damage to brain and kidneys and can cross the bloodbrain barrier. Cases of chronic lead poisoning caused by lead metal used in the water piping system are well known. Therefore, the control of drinking water for lead content is of utmost importance. In many countries (e.g., EU, USA), the limit for lead in drinking water is between 10 and 15 μg/L. These concentrations can reliably be determined with the method described in this Application Bulletin. The determination is carried out by anodic stripping voltammetry at a silver film applied to the scTRACE Gold electrode.
- AN-C-103Standard cations in lake water on the Metrosep C 3 - 250/4.0 column
Determination of lithium, sodium, potassium, magnesium, and calcium in lake water using cation chromatography with direct conductivity detection.
- AN-C-172Cations in snow from an open field
Cation content in snow is greatly dependent on sampling site. Samples from remote areas are expected to exhibit lower cation concentrations. This application shows the analysis of a snow sample from an open field in an agricultural zone. Separation is performed on a microbore Metrosep C 6 - 100/2.0 column with direct conductivity detection. The relatively high ammonia content can be explained by animal husbandry in the vicinity of the sampling site.
- AN-C-173Cations in roadside snow
Cation content in snow is greatly dependent on sampling site. Roadside samples are likely to exhibit a high sodium content caused by the use of road salt. This application shows the analysis of a snow sample from a roadside. Separation is performed on a microbore Metrosep C 6 - 250/2.0 column with direct conductivity detection. The 250 mm column was selected due to the large difference in concentrations between sodium and ammonia. This condition enables a baseline separation of the two cations.
- AN-CIC-033Monitoring PFASs in water sources
AOF (adsorbable organic fluorine) is used to screen for per- and polyfluorinated alkyl substances in aqueous matrices via pyrohydrolytic combustion and ion chromatography.
- AN-CIC-034Fast analysis of AOX in waters by CIC
Combustion ion chromatography (CIC) measures AOX (adsorbable organically bound halogens, i.e., AOCl, AOBr, AOI) and AOF as well as CIC AOX(Cl) according to DIN 38409-59 and ISO/DIS 18127.
- AN-COR-019Determining the corrosion rate with INTELLO
Tafel analysis is an important electrochemical technique used to understand reaction kinetics. By studying the Tafel slope, it reveals the rate-determining steps in electrode reactions, aiding fields like corrosion and fuel cell research. This method helps industries optimize processes and improve device performance by tailoring materials and conditions for greater efficiency.
- AN-CS-007Lithium in addition to other cations in seepage water from minerals through sequential suppression
With the advent of electric automobiles, the demand for lithium batteries and with it the demand for lithium material will increase sharply. Brine lakes and hard silicate minerals are numbered among the most important sources of lithium. This Application Note addresses cation determination in seepage water from lithium minerals. Alkali and earth alkali metals are separated in the lithium digestions on the Metrosep C Supp 1 - 250/4.0 column, with subsequent conductivity detection after sequential suppression.