Applications
- 410000003-APortable Raman Spectroscopy for the Study of Polymorphs and Monitoring Polymorphic Transitions
Raman spectroscopy is used for material characterization by analyzing molecular or crystal symmetrical vibrations and rotations that are excited by a laser, and exhibit vibrations specific to the molecular bonds and crystal arrangements in the molecules. Raman technology is a valuable tool in distinguishing different polymorphs. Examples of portable Raman spectroscopy for identification of polymorphs and in monitoring the polymorphic transiton of citric acid and its hydrated form are presented.
- AN-EC-028Measuring hydrogen permeation according to ASTM G148
In this Application Note, hydrogen permeation experiments are conducted following the procedure described in the ASTM standard G148.
- AN-EC-031Monitoring ferrocyanide oxidation using hyphenated EC-Raman
This Application Note highlights the use of Metrohm Hyphenated EC-Raman Solutions to monitor the reversible oxidation of ferrocyanide at a gold electrode. Variations of the band intensities with the potential can be used to track relative changes in the concentration profile of ferrocyanide and ferricyanide at the surface of the electrode during cyclic voltammetry (CV).
- AN-EC-032Hydrogen permeation with a single instrument according to ASTM G148
The Devanathan-Stachurski cell (or «H cell») is successfully used to evaluate the permeation of hydrogen through sheets or membranes. As small amounts of hydrogen pass through the sheet or membrane, a very sensitive potentiostat is required for its detection. A study of the hydrogen permeation properties of different iron sheets is discussed in this Application Note while taking the instrumental requirements into account.
- AN-EC-035Using a portable standalone system for easy fermentation monitoring
By using an enzymatic sensor with a screen-printed electrode, producers can measure lactic acid production, thereby monitoring fermentation processes.
- AN-FET-001Characterization and performance studies of field-effect transistors (FETs) using μStat-i 400
In recent years, field-effect transistors (FETs) have become more commonly used as a sensing platform for a multitude of electrochemical and biological applications. These devices are promising bioelectronic transducers that allow both low-potential operation and stable potentiometric measurements. FETs are now seen as an attractive alternative to using conventional electrochemical detection systems in the scientific community. This Application Note gives in-depth guidance about how to operate Metrohm DropSens bipotentiostat devices for the characterization of FETs and their use as transducers. A single μStat-i 400 device, a small and portable bipotentiostat and galvanostat, is used to demonstrate the experiments.
- AN-FLU-002Understanding the mechanism of a bioassay indicator by fluorescence
Alamar Blue is monitored with fluorescence spectroelectrochemistry during its irreversible reduction to resorufin and further reversible reduction to dihydroresorufin.
- AN-NIR-089Quality Control of Laminates
In the semiconductor industry, thermoset resins combined with fabric or paper are used as an intermediate layer between substrates of printed circuit boards (PCB). These polymer-based sheets (laminates) are chosen depending on thickness and their thermomechanical and electrical characteristics. Near infrared spectroscopy (NIRS) is a fast, non-destructive and easy-to-use analytical method which allows the measurement of multiple key quality parameters in less than a minute. The following Application Note describes the determination of the transition time of PCB laminates by NIRS, a parameter correlating with the thickness, glass transition temperature, and tensile strength of the material.
- AN-NIR-093Quality Control of fermentation processes
The production of biofuels from renewable feedstock has grown immensely in the past several years. Bioethanol is one of the most interesting alternatives for fossil fuels, since it can be produced from raw materials rich in sugars and starch. Ethanol fermentation is one of the oldest and most important fermentation processes used in the biotechnology industry. Although the process is well-known, there is a great potential for its improvement and a proportional reduction in production costs. Due to the seasonal variation of feedstock quality, ethanol producers to need to monitor the fermentation process to ensure the same quality product is achieved. Near-infrared spectroscopy (NIRS) offers rapid and reliable prediction of ethanol content, sugars, Brix, lactic acid, pH, and total solids at any stage of the fermentation process.
- AN-NIR-099Quality Control of fermentation broths
Cell fermentation processes are a reliable production method for small molecules and protein-based active pharmaceutical ingredients (APIs). The fermentation process requires monitoring of many different parameters to ensure optimal production. These quality parameters include pH, bacterial content, potency, glucose, and concentration of reducing sugars. Traditional laboratory analysis takes a significant amount of time and requires different analytical techniques to monitor these different quality parameters. Near-infrared spectroscopy (NIRS) offers a faster and more cost-efficient alternative to traditional methods for the determination of critical parameters in fermentation broths at any stage of the fermentation process.
- AN-RA-004UV/VIS spectroelectrochemical monitoring of 4-nitrophenol degradation
Spectroelectrochemistry is a multi-response technique that provides both electrochemical and spectroscopic information about a chemical system in a single experiment, i.e., it offers information from two different points of view. Spectroelectrochemistry focused on the UV/VIS region is one of the most important combinations because this allows us to obtain not only valuable qualitative information, but also outstanding quantitative results. In this application note, the degradation kinetics for 4-nitrophenol, a known pollutant, were determined using SPELEC.
- AN-RA-005Characterization of single-walled carbon nanotubes by Raman spectroelectrochemistry
Spectroelectrochemistry is a multi-response technique that provides electrochemical and spectroscopic information about a chemical system in a single experiment, i.e., it offers information from two different points of view. Raman spectroelectrochemistry could be considered as one of the best techniques for both the characterization and behavioral understanding of carbon nanotube films, as it has traditionally been used to obtain information about their oxidation-reduction processes as well as the vibrational structure. This application note describes how the SPELEC RAMAN is used to characterize single-walled carbon nanotubes by studying their electrochemical doping in aqueous solution as well as to evaluate their defect density.
- AN-RS-042Revealing battery secrets with EC-Raman solutions
Electrochemical Raman (EC-Raman) spectroscopy enhances comprehension of energy storage devices by tracking physicochemical changes. This note details EC-Raman findings during nickel-metal hydride (NiMH) battery charge and discharge simulations.
- EB-001Near-infrared spectroscopy for the analysis of petrochemicals
Improve petrochemical quality control with NIRS. Fast, cost-effective, and no sample prep needed. Learn more in our eBook.
- EB-002NIR spectroscopy: The efficiency boost for QC labs
Enhance quality control in material and chemical production with NIRS. Fast, cost-effective, and no sample prep needed. Learn more in our eBook.
- TA-045Real-time monitoring of cell density and growth potential in bioreactors using near-infrared spectroscopy
Cell density and growth potential can be determined with the aid of in-situ near-infrared analysis of mammalian cell cultures in real time. The mammalian cell cultures are enriched thereby in a bioreactor with microcarrier cultures. A stable model made up of several passes must be developed in order to ensure that the variability between the individual samplings is taken into account.NIR spectroscopy can monitor bioreactors "live" and in situ. It is therefore an important instrument in Process Analytical Technology (PAT).
- WP-046Overcoming the aqueous limitation at NIR Spectroelectrochemistry
NIR spectroscopy has been traditionally limited due to the water absorption in this spectral range. In this way, the well-known water restriction has limited the development of new applications for NIR spectroelectrochemistry. In this work, several interesting alternatives are proposed in order to minimize or even to remove the aqueous contribution in this spectral range.
- WP-054Boost efficiency in the QC laboratory: How NIRS helps reduce costs up to 90%
Underestimation of quality control (QC) processes is one of the major factors leading to internal and external product failure, which have been reported to cause a loss of turnover between 10–30%. As a result, many different norms are put in place to support manufacturers with their QC process. However, time to result and the associated costs for chemicals can be quite excessive, leading many companies to implement near-infrared spectroscopy (NIRS) in their QC process. This paper illustrates the potential of NIRS and displays cost saving potentials up to 90%.
- WP-055Corrosion Best Practice – Creating Pipe-flow Conditions Using a Rotating Cylinder Electrode
Electrochemical measurements utilizing a rotating cylinder electrode (RCE) are widely used in industrial corrosion applications when simulation of realistic pipe conditions are necessary in a lab environment. This white paper allows further insight into the particularities and parameters which govern the electrochemical measurements, in particular measurements performed in turbulent flow conditions, and shows a complete picture of the best practice use of this technique. The annexes provide an overview and short explanation of the parameters and laws specific to the fluid behavior in electrochemical cells with RCE.
- WP-071Improving the corn to ethanol fermentation process with near-infrared spectroscopy (NIRS)
The fermentation of corn starch to produce ethanol is a complex biochemical process that requires monitoring of many different parameters (e.g., solids, pH, sugar profile, glycerol, lactic and acetic acid, and water and ethanol content). Traditional laboratory analysis using primary methods (e.g. Karl Fischer titration) takes about an hour to complete and is a limiting step for increasing plant capacity and efficiency. As a fast and non-destructive analytical technique, near-infrared spectroscopy (NIRS) can replace routine laboratory analysis, decreasing operating costs and increasing plant efficiency and capacity. This White Paper describes the capabilities of the modern analytical method near-infrared (NIR) spectroscopy for monitoring and improving the fermentation process of corn to ethanol.