Application Finder
- 8.000.6007Determination of sulfate in denatured ethyl alcohol according to ASTM D7319
In this poster a convenient direct injection suppressed ion chromatographic method for determining chloride and sulfate in denatured ethanol samples according to ASTM D7319 is presented.
- 8.000.6011Ion chromatographic determination of anions, cations and organic acids in biofuels
Quality and process control of biofuels require straightforward, fast and accurate analysis methods. Ion chromatography (IC) is at the leading edge of this effort. Traces of anions in a gasoline/ethanol blend can accurately be determined in the sub-ppb range after Metrohm Inline Matrix Elimination using anion chromatography with conductivity detection after sequential suppression. While the analyte anions are retained on the preconcentration column, the interfering organic gasoline/bioethanol matrix is washed away.Detrimental alkali metals and water-extractable alkaline earth metals in biodiesel are determined in the sub-ppm range using cation chromatography with direct conductivity detection applying automated extraction with nitric acid and subsequent Metrohm Inline Dialysis. Unlike high-molecular substances, ions in the high-ionic strength matrix diffuse through a membrane into the low-ionic water acceptor solution. In biogas reactor samples, low-molecular-weight organic acids stem from the biodegradation of organic matter. Their profile allows important conclusions concerning conversion in the anaerobic digestion reaction. Volatile fatty acids and lactate can be accurately determined by using ion-exclusion chromatography with suppressed conductivity detection after inline dialysis or filtration.
- 8.000.6012Automated logical dilution for ion chromatographic determinations
The combination of 850 Professional IC, 858 Professional Sample Processor, Dosino and MagIC NetTM software offers a variety of sophisticated ion chromatographic sample preparation techniques. One of these is the automated inline dilution of samples.After the first sample injection, MagIC NetTM verifies if the area of the sample peak lies within the calibration range. If the measured peak area is outside these limits, the software calculates the appropriate dilution factor, dilutes and automatically re-injects the sample. For all investigated ions (Li+, Na+, K+, Ca2+, Mg2+, F-, Cl- , NO2-, Br-, NO3-, SO42- ), automated logical dilution yielded coefficients of determination (R2) better than 0.9999. Direct-injection recoveries for cations and anions were within 98.6…99.5% and 93.4…100.4% respectively. In contrast, after logical dilution, recoveries for cations and anions were within 100.1…102.9% and 98.2…102.6% respectively. The relative standard deviations for all determinations involving diluted sample solutions were smaller than 0.91%.
- 8.000.6013Analysis of produced water contaminants by ion chromatography
The analytical challenge treated by the present work consists in detecting sub-ppm quantities of bromide, sulfate, aliphatic monocarboxylic acids and several alkaline earth metals in the presence of very high concentrations of sodium and chloride. Bromide, sulfate, acetate and butyrate can be reliably determined by suppressed conductivity detection. Due to matrix effects, propionate can only be detected qualitatively. This drawback can be overcome by coupling the ion chromatograph (IC) to a mass spectrometric (MS) detector. This results in reduced matrix interferences and significantly enhanced sensitivities. The cations magnesium, barium and strontium are determined by non-suppressed conductivity detection.
- 8.000.6014Determination of anions and cations in aerosols by ion chromatography
The study of adverse effects of air pollution requires semi-continuous, rapid and accurate measurements of inorganic species in aerosols and their gas phase components in ambient air. The most promising instruments, often referred to as steam collecting devices, are the Particle-Into-Liquid-Sampler (PILS) coupled to wet-chemical analyzers such as a cation and/or anion chromatograph (IC) and the Monitoring instrument for AeRosols and GAses (MARGA) with two integrated ICs. Both instruments comprise gas denuders, a condensation particle growth sampler as well as pump and control devices. While PILS uses two consecutive fixed denuders and a downstream growth chamber, the MARGA system is composed of a Wet Rotating Denuder (WRD) and a Steam-Jet Aerosol Collector (SJAC). Although the aerosol samplers of PILS and MARGA use different assemblies, both apply the technique of growing aerosol particles into droplets in a supersaturated water vapor environment. Previously mixed with carrier water, the collected droplets are continuously fed into sample loops or preconcentration columns for on-line IC analysis. While PILS has been designed to sample aerosols only, MARGA additionally determines water-soluble gases. Compared to the classical denuders, which remove gases from the air sample upstream of the growth chamber, MARGA collects the gaseous species in a WRD for on-line analysis. In contrast to the gases, aerosols have low diffusion speeds and thus neither dissolve in the PILS denuders nor in the WRD. Proper selection of the ion chromatographic conditions of PILS-IC allows a precise determination, within 4 to 5 minutes, of seven major inorganic species (Na+, K+, Ca2+, Mg2+, Cl-, NO3- and SO4 2-) in fine aerosol particles. With longer analysis times (10-15 minutes) even airborne low-molecular-weight organic acids, such as acetate, formate and oxalate can be analyzed. MARGA additionally facilitates the simultaneous determination of HCl, HNO3, HNO2, SO2 and NH3.PILS and MARGA provide semi-continuous, long-term stand-alone measurements (1 week) and can measure particulate pollutants in the ng/m3 range.
- 8.000.6016Advantages of multidimensional ion chromatography for trace analysis
The analytical challenge treated in the present work consists in detecting trace concentrations (ppb) of bromide in the presence of a strong chloride matrix. This problem was overcome by separating the bromide ions from the main fraction of the early eluting chloride matrix (several g/L) by applying two sequential chromatographic separations on the same column. After the first separation, the main fraction of the interfering chloride matrix is flushed to waste, while the later eluting anions are diverted to an anion-retaining preconcentration column. After elution in counter flow, the bromide ions are efficiently separated from the marginal chloride residues. The four-point calibration curves for bromide and sulfate are linear in the range of 10…100 µg/L and 200…800 µg/L and yield correlation coefficients of 0.99988 and 0.99953 respectively. For the method shown here, a second injection valve and a preconcentration column are the only additional devices needed to master this demanding separation problem.
- 8.000.6020Titrimetric analyses of biofuels
Several testing methods such as the determination of the acid and the iodine numbers in biodiesel as well as the quantification of sulfate and chloride in bioethanol are described.
- 8.000.6042Straightforward multipoint calibration using a single standard
The combination of 850 Professional IC, 858 Professional Sample Processor, Dosino and MagIC NetTM software offers a variety of automated ion chromatographic sample preparation and calibration techniques available as an anion, cation or dual channel system. Calibration is straightforward and requires only one multi-ion standard.Inline calibration allows the calibration of any standard concentration in the ppt range by using one single stable standard solution at the ppb level. By using a preconcentration column and switching the valves one, two or more times different calibration concentrations at the ultra-trace level can be created with unprecedented reproducibility. The inline preconcentration technique uses a pre-concentration column and is ideally suited for trace analysis in complex matrices, especially when combined with matrix elimination. Besides facilitating the preparation of g/L to ng/L calibration graphs Metrohm`s intelligent techniques are capable of logical decision making. While Metrohm`s intelligent Partial Loop technique (MiPT) allows samples with a wide concentration range to be injected without previous manual dilution, the intelligent inline dilution technique, after the first sample injection, compares peak areas, calculates, if necessary, the dilution factor, dilutes and automatically re-injects the sample. The presented inline techniques allow the rationalization of the time-consuming, error-prone and cost-intensive manual preparation of standard solutions. They guarantee that the determined sample concentrations always lie within the calibration range. Higher sample throughputs as well as lower analysis costs and improved data reliability are achieved.
- 8.000.6043Automated dialysis as a sample preparation tool in ion chromatography
The analytical challenge treated in the present work consists in the determination of chloride, phosphate and sulfate in the presence of difficult sample matrices that interact with the stationary column phase or even render it unusable. Metrohm`s patented stopped-flow dialysis coupled to the new 881 Compact IC pro ion chromatograph overcomes these drawbacks. Two standard solutions covering the concentration ranges 1.0…3.6 mg/L and 10…36 mg/L as well as two samples, an ultra-high temperature (UHT) processed milk and a baby milk powder, were characterized in terms of analyte concentration, relative standard deviation, calibration quality, carryover and recovery rates. While the five-point calibration curves yielded correlation coefficients (R) better than 0.9999, carryover (between two subsequent injections of a concentrated sample and a blank) was less than 0.49%. Recoveries for the low (10…36 mg/L) and high standard concentrations (1.0…3.6 mg/L) were within 91…99% and 94…100%, respectively. Automated compact stopped-flow dialysis is a leading-edge sample preparation technique that ensures optimum separation performance by effectively protecting the column from detrimental matrix compounds.
- 8.000.6044Fully automated sample preparation for liquid chromatographic content determinations
Inline coupling of the 815 Robotic Soliprep with an ion chromatograph (IC) allows the straightforward determination of anions and cations in tablets. After automatic solvent addition and subsequent comminution, the homogenized tablet samples (Singulair and Bezafibrat) are filtered and subsequently transferred to the injector. The completely automated sample preparation saves both time and money, guarantees traceability of each sample preparation step and yields correct and precise results. In the range of 0.2…50 mg/L, six-point calibration curves for anions and cations yield correlation coefficients better than 0.99990 and 0.99991, respectively. While relative standard deviations (RSDs) for sub-ppm levels of nitrate, sulfate, calcium and magnesium in Singulair and Bezafibrat are smaller than 3.64%, RSD of ppm levels of chloride is better than 0.83%. The application of further inline sample preparation steps such as pulverizing, extracting, filtering or diluting facilitates numerous custom-tailored setups for ion determinations in exacting matrices such as animal feed, sediments or food.
- 8.000.6052Quality assurance of biofuels
This poster provides an overview of ion chromatographic methods combined with inline sample preparation for the determination of anions and water-extractable cations in biofuels. In addition, the determination of the oxidation stability is described.
- 8.000.6058Analysis of airborne particulate matter by PILS-IC
This study compares air sampling data obtained by a filter-based method including off-line manual filter extraction followed by ion chromatographic analysis with those gained by an automated Particle-Into-Liquid-Sampler coupled to an ion chromatograph (PILS-IC).PILS-IC is a straightforward instrument for aerosol sampling that provides near real-time measurements for long-term unattended operation and is thus an indispensable tool to monitor rapid changes in aerosol particle ionic composition.
- 8.000.6064Microbore columns: a contribution to green chemistry
Available sample size, mass sensitivity, efficiency and the detector type are important criteria in the selection of separation column dimensions. Compared to conventional 4 mm i.d. columns, microbore columns excel, above all, by their low eluent consumption. Once an eluent is prepared, it can be used for a long time. Additionally, the lower flow rates of microbore columns facilitate the hyphenation to mass spectrometers due to the improved ionization efficiency in the ion source.With the same injected sample amount, a halved column diameter involves a lower eluent flow and results in an approximate four-fold sensitivity increase. In a converse conclusion, this means that with less sample amount, microbore columns achieve the same chromatographic sensitivity and resolution than normal bore columns. This makes them ideally suited for samples of limited availability.
- 8.000.6065Automated ion chromatographic determinations over six orders of magnitude
Metrohm`s intelligent Preconcentration Technique with Matrix Elimination (MiPCT-ME) excels in its capacity to perform automatic ion chromatographic determinations over 6 orders of magnitude. Crucial requirements for this are the system`s intelligence and the exact measurement of the sample volume. While the intelligence allows to compare results and take decisions, the dosing device takes over the high-precision liquid handling of even single-digit microliter volumes to the preconcentration column. By using only one analytical setup and without additional rinsing, samples containing both ultratraces and high concentrations can be analyzed.As the other Metrohm Inline Techniques, the MiPCT-ME technique presented reduces the workload, ensures complete traceability, is free of carryover effects and significantly improves accuracy and reproducibility of the results.
- 8.000.6071Trace-level determination of anions in the primary circuit of a PWR-type nuclear power plant using ion chromatography after inline sample preparation
The poster presents the ion chromatographic determination of organic degradation products such as glycolate, formate and acetate besides the standard anions fluoride, chloride, nitrate and sulfate.
- 8.000.6073Determination of anions in concentrated nitric acid by ion chromatography: the influence of temperature on column selectivity
Determination of chloride and sulfate in the presence of high nitrate concentrations. Optimization of the chromatographic separation by variation of the temperature and eluent composition.
- 8.000.6075Determination of pyrophosphate, trimetaphosphate, tripolyphosphate, and standard ions in detergents or fertilizers using IC with a high-capacity suppressor
Three different suppressor systems are compared in terms of sensitivity. Additionally, binary gradient elution was applied to analyze phosphates in the presence of mono- and divalent ions.
- 8.000.6076Sequential suppression for conductivity detection in ion chromatography
The poster describes how different suppressors (MSM and MCS) work and mentions possible applications.
- 8.000.6086Semi-continuous determination of anions, cations, and heavy metals in aerosols using PILS-IC-VA
This poster presents an approach that couples a Particle-Into-Liquid-Sampler (PILS) to a dual-channel ion chromatograph (IC) for measurement of aerosol anions and cations and a voltammetric measuring stand (VA) to determine the heavy metals. Feasibility of the PILS-IC-VA online system was demonstrated by collecting aerosol samples in Herisau Switzerland, at defined time intervals; air pollution events were simulated by burning lead- and cadmium-coated sparklers.
- 8.000.6091Ion chromatographic determination of halogens and sulfur in solids using combustion as inline sample preparation
The Combustion IC system presented allows the automated determination of organic halogen and sulfur compounds in all flammable samples. Both combustion digestion, which is automatically controlled with a flame sensor, and the professional Liquid Handling guarantee highest precision and trueness. This poster describes the determination of the halogen and sulfur content in a certified polymer standard, a coal reference material as well as in latex and vinyl gloves.
- 8.000.6107USP Modernization Initiative: Ionic Impurities in Drug Substances by Ion Chromatography
This poster presented jointly with USP at AAPS meeting shows, that we successfully validated an IC method to determine chloride and sulfate in drug substances, potassium bicarbonate and potassium carbonate. The proposed IC method overcomes limitations of the turbidimetry/visual comparison methods.
- AB-027Potentiometric titration of chloride and bromide in the presence of each other
If chloride and bromide are present in approximately equal molar concentrations they can be titrated directly with silver nitrate solution after addition of barium acetate. If, however, the molar ratio n(Br-) : n(Cl-) changes from 1 : 1 to 1 : 5, 1 : 10, 5 : 1 or 10 : 1 then greater relative errors must be expected with this method. The Bulletin describes an additional titration method that allows bromide to be determined in the presence of a large excess of chloride. The determination of small chloride concentrations in the presence of a large excess of bromide is not possible by titration.
- AB-069Titrimetric methods for the chemical analysis of pasta
The quality of egg-based pasta is primarily determined by its egg content. Also of importance, however, is the water content, which influences the storage life of the product, as well as the degree of acidity which, in the case of high values, indicates undesirable acidification during processing or drying. A check of the chloride content shows whether salt has been added to the pasta.
- AB-085Analysis of jams, fruit and vegetable juices, and their concentrates
This Bulletin describes analysis methods for determining the following parameters: pH value, total titratable acid, ash alkalinity, formol number, total sulfurous acid, chloride, sulfate, calcium, and magnesium. These methods are suitable for the analysis of jams, fruit and vegetable juices, and their concentrates.
- AB-087Analysis of dairy products
This Bulletin describes potentiometric titration methods for the determination of the acidity in milk and yoghurt according to DIN 10316, ISO/TS 11869, IDF/RM 150, ISO 6091 and IDF 86, the chloride content in milk, butter and cheese according to EN ISO 5943, IDF 88, ISO 15648, IDF 179, ISO 21422, and IDF 242. Additionally the determination of the sodium content in milk using the thermometric titration is described. The determination of the oxidation stability of butter in accordance to AOCS Cd 12b-92, ISO 6886 and GB/T 21121 as well as the determination of lactose in lactose free milk by ion chromatography is also described.For the determination of the pH value in dairy products see Application Bulletin AB-086 and for the determination of calcium and magnesium see Application Bulletin AB-235.
- AB-089Potentiometric analysis of anodizing baths
This Bulletin describes potentiometric titration methods for checking sulfuric acid and chromic acid anodizing baths. In addition to the main components aluminum, sulfuric acid, and chromic acid, chloride, oxalic acid, and sulfate are determined.
- AB-090Potentiometric analysis of tin plating baths
Potentiometric titration methods for the analysis of acid and alkaline tin plating baths are presented. The following methods are described: tin(II) / tin(IV) / total tin, free fluoroboric acid, or free sulfuric acid, chloride in acidic tin baths, free hydroxide, and carbonate in alkaline tin baths.
- AB-130Chloride titrations with potentiometric indication
Potentiometric titration is an accurate method for determining chloride content. For detailed instructions and troubleshooting tips, download our Application Bulletin.
- AB-178Fully automated analysis of water samples
The determination of the physical and chemical parameters as electrical conductivity, pH value, p and m value (alkalinity), chloride content, the calcium and magnesium hardness, the total hardness, as well as fluoride content are necessary for evaluating the water quality. This bulletin describes how to determine the above mentioned parameters in a single analytical run.Further important parameters in water analysis are the permanganate index (PMI) and the chemical oxygen deman (COD). Therefore, this Bulletin additionally describes the fully automated determination of the PMI according to EN ISO 8467 as well as the determination of the COD according to DIN 38409-44.
- AB-221Standard methods in water analysis
This Bulletin gives a survey of standard methods from the field of water analysis. You will also find the analytical instruments required for the respective determinations and references to the corresponding Metrohm Application Bulletins and Application Notes. The following parameters are dealt with: electrical conductivity, pH value, fluoride, ammonium and Kjeldahl nitrogen, anions and cations by means of ion chromatography, heavy metals by means of voltammetry, chemical oxygen demand (COD), water hardness, free chlorine as well as a few other water constituents.
- AB-265Hamilton PRP-X100 IC anion column (6.1005.000)
This Bulletin describes the determination by ion chromatography of anions, particularly fluoride, chloride, nitrite, bromide, nitrate, and sulfate using the Hamilton PRPX100 IC anion column without chemical suppression.
- AN-C-146Bethanechol and HPTA (2-hydroxy-propyl-trimethyl ammonium) besides sodium and calcium (Metrosep C 6 - 250/4.0)
Bethanechol is a pharmaceutical compound which is used to treat urinary retention. This API (active pharmaceutical ingredient) can be determined by cation chromatography with direct conductivity detection. A good separation is achieved between bethanechol and its degradation product 2-hydroxy-propyl-trimethyl ammonium (HPTA) and the standard cations. Peak shape and resolution meet the USP requirements for bethanechol.
- AN-CIC-016Halogen traces in coal with the Metrohm Combustion IC
The burning of coal contaminates the atmosphere with halogens. Fluorine and chlorine are natural components of coal, whereas the bromide that is found therein is often adulterated as calcium bromide in order to reduce mercury emissions. This Application Note shows the results of combustion digestion with Combustion IC for three coal samples, each with a different bromide content.Keyword: pyrohydrolysis
- AN-CIC-021Halogen and sulfur in chlorinated and brominated halobutyl rubber applying Combustion IC
Halobutyl rubber is frequently used in the production of pharmaceutical stoppers. It is ideal for this application due to its low permeability to gases and its chemical resistance. Chlorinated and brominated butyl rubber stoppers are analyzed for their halogen and sulfur content. Halogen and sulfur compounds are released by pyrohydrolysis and analyzed by subsequent ion chromatography (IC).
- AN-CIC-024Organic chloride in naphtha fraction of crude oil distillation according to ASTM D8150
The content of organic chloride in crude oil is determined according to ASTM D8150 in the naphtha fraction after distillation. The naphtha fraction is whashed with caustic and water, respectively, to remove hydrogen sulfide and inorganic halides. Here, the determination of organic chloride after inline combustion is presented. Although the sulfur content was of no interest in this application, the same setup allows sulfur quantification.
- AN-CIC-027Halogens in polymer by Combustion Ion Chromatography
Polymer materials that are used for building and decoration purposes need to be flame resistant. To reach the required level of resistance flame-retardants are added to the plain polymer. Flame-retardants are often haloorganic compounds. The use of such components and the respective concentration of introduced halogens can be determined by Combustion IC. The recovery over the full system is tested with acertified reference material (CRM).
- AN-CIC-028Fluorine and chlorine in iron ore by Combustion Ion Chromatography
Iron ore is an important resource for steel production. Its natural content of halogens is a quality characteristic due to the corrosiveness of the respective halogenides. Combustion IC applying the sacrificial vial technology is used for the analysis of fluorine and chlorine in ore. WO3 usually is added to improve the release of SO2 and therefore sulfur recovery. In this application, it also significantly improves the recovery of fluoride.
- AN-CIC-032Chloride as an indicator of residual solvent presence in cellulose ester-based foil
Cellulose ester foils are produced using chlorinated solvents. The residual amount of the solvent used in production evaporates within a few days in ambient conditions. The residual solvent is determined by combustion IC, through the conversion of organically bound chlorine to chloride by pyrohydrolysis. The final product needs to be free of all chlorinated solvents. Therefore, critical contents of such compounds can be detected in quality control analysis. Application of MiPT in this study has enabled an automated and precise calibration out of a single standard.
- AN-CIC-033Monitoring PFASs in water sources
AOF (adsorbable organic fluorine) is used to screen for per- and polyfluorinated alkyl substances in aqueous matrices via pyrohydrolytic combustion and ion chromatography.
- AN-CIC-034Fast analysis of AOX in waters by CIC
Combustion ion chromatography (CIC) measures AOX (adsorbable organically bound halogens, i.e., AOCl, AOBr, AOI) and AOF as well as CIC AOX(Cl) according to DIN 38409-59 and ISO/DIS 18127.
- AN-D-001Metrohm IC Driver for OpenLab CDS
This application focuses on the simultaneous analysis of cations and suppressed anions with a dual channel Metrohm IC operated by OpenLab CDS.
- AN-D-002Anions and cations in beer
This Application Note presents ion chromatography as a precise method to analyze anions in beer as well as cations with non-suppressed conductivity. Automation with Inline Ultrafiltration is also discussed.
- AN-D-003Quality control of dialysis concentrates
Ion chromatography (IC) provides an automated, fast, and sensitive solution to accurately quantify cationic and anionic components including acetate simultaneously. This comprehensive approach makes IC an economic alternative to traditional techniques for the quality control of pharmaceutical solutions like haemodialysis concentrates. Ease-of use, accuracy, and the high-throughput of IC increase productivity and comply with the demands of modern routine and research labs.
- AN-H-017Determination of bromide and chloride in photographic developer solutions
Determination of bromide and chloride in photographic developer solutions.
- AN-H-018Determination of chloride in drilling fluids
Determination of chloride in oil well drilling fluids.
- AN-H-033Determination of low levels of chloride in water
Determination of low levels of chloride (to approximately 5 mg/L Cl-) by thermometric titration.
- AN-H-067Determination of chloride in Bayer process liquor
Determination of chloride in Bayer process liquor.
- AN-H-078Determination of total halides in brines
Determination of total halides (Cl- + Br- +I-) in seawater and similar brines. This procedure is suitable for the analysis of total halides in seawater contaminated with sodium aluminate solutions emanating from alumina refineries, and seawater which has been used for the neutralization of alumina refinery waste («red mud») slurries. Given the small concentration of bromine andiodine in seawater, the total halide content approximates the chloride concentration.
- AN-I-006Chloride content of water samples
Determination of chloride in water by direct potentiometry using the Cl-ISE.
- AN-I-015Determination of the chloride content in dye
In the synthesis of certain dyes, sodium chloride is a byproduct. The content of chloride is therefore an important parameter. This Application Note describes the determination of the chloride content in dye by standard addition using a Cl- ion-selective electrode.