Application Finder
- 410000003-APortable Raman Spectroscopy for the Study of Polymorphs and Monitoring Polymorphic Transitions
Raman spectroscopy is used for material characterization by analyzing molecular or crystal symmetrical vibrations and rotations that are excited by a laser, and exhibit vibrations specific to the molecular bonds and crystal arrangements in the molecules. Raman technology is a valuable tool in distinguishing different polymorphs. Examples of portable Raman spectroscopy for identification of polymorphs and in monitoring the polymorphic transiton of citric acid and its hydrated form are presented.
- 410000051-BIdentification of microplastics with Raman microscopy
Research laboratories must expand their capabilities to routinely analyze candidate microplastics from environmental samples to determine their origin and help predict biological impacts. Spectroscopic techniques are well suited to polymer identification. Laboratory Raman spectroscopy is an alternative to confocal Raman microscopes and Fourier transform infrared (FTIR) microscopes for quick identification of polymer materials. Raman microscopy was used to identify very small microplastic particles in this Application Note.
- 410000053-AQuantitative Analysis of a Water-soluble Polymer Using the i-Raman EX Spectrometer
Quantitation of the functionalization of a water-soluble polymer was achieved using a portable Raman spectrometer. The Raman spectrum provides strong, unique bands for both the initial and fully reacted polymer. This enables development of a simple, robust quantitative analysis of the percent polymer functionalization. This method is now routinely used in a manufacturing plant's quality control laboratory.
- AN-NIR-003Analysis of copolymer levels in polymer pellets by near-infrared spectroscopy
This Application Note describes the determination of copolymer levels in polyethylene (PE) and polyvinylacetate (PVA) pellets using NIRS. The determination of the composition of the polymer blends takes less than 30 seconds and requires no sample preparation. The second derivative spectra are analyzed by means of the linear least-squares regression method.
- AN-NIR-004Determination of additives in polymer pellets by near-infrared spectroscopy
This Application Note shows that NIR spectroscopy is an excellent tool for determining low concentrations of additives in finished polypropylene pellets. This is demonstrated by monitoring the UV stabilizer Tinuvin 770 and the antioxidant Irganox 225. The application of multiple linear regression (MLR) models minimizes interferences that originate from different coating thicknesses and interferences in the polymer pellets.
- AN-NIR-005Determination of coatings on nylon fibers by near-infrared spectroscopy
This Application Note demonstrates how NIR spectroscopy can be used to determine the content of coatings on nylon fibers, quickly and without requiring either sample preparation or the use of reagents. In order to suppress the effects arising from scattering on the surface coatings, one forms the second derivative spectra; the linear least-squares regression method is used to calculate the calibration function.
- AN-NIR-008Determination of lignin in wood pulp
This Application Note describes how NIR spectroscopy can be used to determine residual lignin content in wood pulp. Using the major absorbance peaks of both lignin and cellulose in the second derivative spectra, the residual lignin content in wood pulp can be monitored during paper production.
- AN-NIR-054Quality Control of Shampoo
Determination of sodium laureth sulfate (SLES), cocamidopropyl betaine (CABP), cocamidopropylamine oxide (CAW), cocamide diethanolamine (DEA), and carbopol in shampoo is a cost- and time-intensive process due to the use of large volumes of chemicals per analysis. This application note demonstrates that the DS2500 Solid Analyzer operating in the visible and near-infrared spectral region (Vis-NIR) provides a cost-efficient and fast solution for a simultaneous determination these parameters in shampoo. With no sample preparation or chemicals needed, Vis-NIR spectroscopy allows for the complete analysis in less than a minute.
- AN-NIR-076Quality control of polyvinyl alcohol
Polyvinyl alcohol (PVA) is a linear polymer, used in a variety of medical products (e.g. eye drops). Here, the degree of alcoholysis is an important index for the water solubility, viscosity, and adhesion of the product. The degree of alcoholysis is defined as the percentage of hydroxyl functional groups compared to the total functional groups accessible in the molecule. Conventional alcoholysis determination can take up to six hours per sample. Compared to the primary method, analysis with near-infrared spectroscopy (NIRS) only takes one minute. The following application note describes the determination of the degree of alcoholysis by NIRS.
- AN-P-057Polydextrose in cookies using pulsed amperometric detection in accordance with AOAC 2000.11
Polydextrose is a low-calorie, synthetic polymer made of glucose. It is a recognized additive for foodstuffs. Hot water is used to extract the polydextrose from the foodstuff, after which it is centrifuged. Subsequent fermentation removes maltooligomers and fructans. Afterwards, the polydextrose is quantified using anion-exchange chromatography with pulsed amperometric detection.
- AN-RS-004Raman spectroscopy analyses of road construction materials
Solids used in road construction were analyzed with a hand-held Raman spectrometer. The materials examined are conventional pigments and resins, e.g., CaCO3, TiO2 and DEGALAN®. The measured spectra differ considerably from one another. In order to assess the main differences between the chemical structures, the peaks of the spectra were assigned to the functional groups that generated them.
- AN-RS-007Identification of polymer masterbatches with Raman spectroscopy
Handheld Raman spectroscopy enables rapid polymer masterbatch analysis, while Metrohm’s XTR® algorithm mitigates fluorescence interference for accurate additive identification.
- AN-RS-008Identification of monomers with Raman spectroscopy
Raman spectroscopy can easily monitor polymerization by tracking monomer consumption and polymer formation, providing a valuable tool for polymer manufacturers.
- AN-RS-034Orbital Raster Scan (ORS™)
This application note presents the Orbital Raster Scan (ORS) technology from Metrohm Raman to overcome low resolution, poor sensitivity, and sample degradation while still interrogating a large sample area.
- AN-SEC-004Spectroelectrochemical analysis of electrochromic materials
Poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the most promising ICPs due to its high conductivity, electrochemical stability, catalytic properties, high insolubility in almost all common solvents and interesting electrochromic properties (transparent in the doped state and colored in the neutral state). In this Application Note, PEDOT film is evaluated by spectroelectrochemical techniques.
- BWT-4904The Benefits of Raman Spectroscopy for the Identification and Characterization of Polymers
Raman spectroscopy is a quick nondestructive method for the direct identification of plastics. It can also be used for the analysis of flame retardants, lubricants and other additives. Coupled with chemometric software, quantitative and advanced qualitative analyses can be performed.
- BWT-4907Fundamentals of Raman Spectroscopy
The fundamentals of Raman instrumentation and spectroscopy are presented along with common applications of Raman.
- BWT-4912Quantitative Analysis Using New Generation Raman Spectrometers and Chemometrics ─ Smaller and Faster
Small, fast high-performance Raman spectrometers are now readily available. Three real-life Raman quantitative and semi-quantitative analysis applications are discussed. These applications showcase the versatility of Raman spectroscopy and the potential impact that it can make in various industries such as security, pharmaceutical, and plastics and polymers.
- EB-001Near-infrared spectroscopy for the analysis of petrochemicals
Improve petrochemical quality control with NIRS. Fast, cost-effective, and no sample prep needed. Learn more in our eBook.
- EB-002NIR spectroscopy: The efficiency boost for QC labs
Enhance quality control in material and chemical production with NIRS. Fast, cost-effective, and no sample prep needed. Learn more in our eBook.
- WP-054Boost efficiency in the QC laboratory: How NIRS helps reduce costs up to 90%
Underestimation of quality control (QC) processes is one of the major factors leading to internal and external product failure, which have been reported to cause a loss of turnover between 10–30%. As a result, many different norms are put in place to support manufacturers with their QC process. However, time to result and the associated costs for chemicals can be quite excessive, leading many companies to implement near-infrared spectroscopy (NIRS) in their QC process. This paper illustrates the potential of NIRS and displays cost saving potentials up to 90%.