Application Finder
- AN-H-147Potassium in fertilizers – Rapid and reliable determination by thermometric titration
Potassium is a primary macronutrient for plants, as it plays an important role in water regulation as well as plant growth. In NPK fertilizers, potassium is present besides nitrogen and phosphorus, which are the other two primary macronutrients. Knowing the quality and content of a NPK fertilizer allows an optimal fertilizer management for a planned culture, saving costs and increasing profitability.Traditionally potassium is determined gravimetrically or by flame photometry. In this Application Note, an alternative method is presented, where potassium is determined a precipitation titration. Various solid and liquid NPK fertilizers with potassium contents between 10 and 27% were analyzed. After the removal of any present ammonia, the potassium can be determined reliably in about 5 minutes.
- AN-H-148Potassium in potash
Potash is commonly mined from ore, deposited after ancient inland oceans evaporated. The potassium salt is then purified in evaporation ponds. At the end of this process, the potash is typically obtained as potassium chloride. Potash is mainly used as fertilizer, providing potassium—an essential nutrient—to plants. Additionally, it is used in the chemical industry and to produce medicine. Potassium content in potash is typically determined by flame photometry (F-AES) or ICP-OES. However, these techniques have high investment and running costs. By applying the historically used gravimetric precipitation reaction as a thermometric titration, it becomes possible to rapidly and inexpensively determine the potassium content in potash within minutes.
- AN-I-001Fluoride content in toothpaste
Fluoride protects dental enamel and is an important trace element in toothpaste. A rapid and precise determination is made via standard addition with the help of an ion-selective fluoride electrode (F-ISE).
- AN-I-002Low levels of ammonia in distilled water
Determination of ammonia (ammonium) in distilled water by direct potentiometry using the NH3-ISE.
- AN-I-004Nitrate content of a copper plating bath
Determination of nitrate in a copper plating bath after conversion of nitrate to ammonium. Direct potentiometric measurement using the NH3-ISE.
- AN-I-005Fluoride content of a chromium plating bath
Determination of fluoride in a chromium plating bath by direct potentiometry using the F-ISE.
- AN-I-006Chloride content of water samples
Determination of chloride in water by direct potentiometry using the Cl-ISE.
- AN-I-007Fluoride content of cement and clinker
Determination of fluoride in cement or clinker by direct potentiometry with the F-ISE.
- AN-I-008Sulfide content of wastewater
Determination of sulfide in wastewater by direct potentiometry with the Ag/S ion-selective electrode.
- AN-I-009Cyanide in water
Cyanides are used in some industrial processes, but if not handled carefully, they could contaminate the wastewater. In an acidic or neutral environment, this contaminated wastewater can form highly toxic hydrogen cyanide gas. Furthermore, the cyanide salts could also poison the environment and enter the ground water system. Therefore, it is essential to monitor the content of cyanide in effluent water. Cyanides can be easily determined with a cyanide ion-selective electrode. This application note presents a method for cyanide analysis according to APHA Method 4500-CN and ASTM D2036.
- AN-I-010Nitrate in carrot and beetroot juices – Fast and inexpensive analysis by standard addition
Nitrate is present in all common agricultural products and due to an extensive use of fertilizers, the nitrate content can be disconcertingly high in vegetables and their fabricated products, like juices. The nitrate content is regulated in many countries because it can form nitrosamines within the human body. Nitrosamines can potentially cause cancer and therefore, the World Health Organization (WHO) has defined an accepted daily intake (ADI) for nitrate of 3.7 mg/kg. To control the nitrate content e.g., in juices, a quick and inexpensive assessment of its concentration is performed via standard addition with a nitrate ion selective electrode . The method can be automated and is faster and less expensive compared to competing chromatographic or spectroscopic methods.
- AN-I-011Fluoride content in drinking water
Fluoride content in drinking water can be determined quickly and conveniently with the help of potentiometric titration and the ion-selective fluoride electrode (F-ISE). The F-ISE is calibrated with suitable standard solutions before the measurement.
- AN-I-012Automated calibration of the NH3 ISE for low ammonia concentrations
Ammonia determination via NH3 ISE requires precise calibration. Details on this are provided by the present Application Note.
- AN-I-013Sulfide in ground and waste water
Even in low concentration, sulfide ions cause odor and corrosion problems in ground water and waste water. They can release hydrogen sulfide in acidified water, which is toxic in even minuscule amounts. This Application Note describes the determination of sulfide concentration in water via direct measurement with the Ag/S-ISE in accordance with ASTM D4658.
- AN-I-014Bromide in water
Bromide is ubiquitous in sea water, where it is present in concentrations of around 65 mg/L. By contrast, the maximum bromide concentration in drinking and ground water is usually less than 0.5 mg/L. A higher bromide content may indicate a contamination of the water caused by fertilizer, road salt or industrial waste water. This Application Note describes the determination of the bromide content in water via direct measurement with a Br ion-selective electrode in accordance with ASTM D1246.
- AN-I-015Determination of the chloride content in dye
In the synthesis of certain dyes, sodium chloride is a byproduct. The content of chloride is therefore an important parameter. This Application Note describes the determination of the chloride content in dye by standard addition using a Cl- ion-selective electrode.
- AN-I-016Potassium in fruit juice and wine – Fast and economical determination by ion measurement
Determination of the potassium content plays a major role in the food and beverage industry. Potassium is an essential mineral nutrient for humans. It is an important intracellular cation and also plays an important role in processes withincells, where it is involved in the regulation of numerous body functions like blood pressure, cell growth and muscle control.To declare the potassium content of drinks and food, it is usually determined by flame photometric method. However, flame photometry is linear only over a limited concentration range, and often sample dilution is necessary. Furthermore, the instrumentation is rather complex and expensive to buy and maintain. The ion measurement method presented here is a fast, less expensive, and reliable alternative to determine potassium content in beverages.
- AN-I-017Potassium in electrolyte powder – Fast and economical determination by standard addition
The determination of the potassium content in foodstuffs plays a major role in the food and dietary supplement industry, as potassium is an essential mineral nutrient for humans. It is an important intracellular cation and also plays a important role in processes within cells, where it is involved in the regulation of numerous body functions like blood pressure, cell growth and muscle control.As a dietary supplement, potassium is present in e.g., electrolyte powder, electrolyte drinks and food supplements. To quantify the potassium content in such products, e.g. flame photometry can be used. In this work, an alternative, ion measurement by standard addition, is described, which is fast, inexpensive and simple to use.
- AN-I-018Ammonium in liquid fertilizer – Reliable determination by standard addition with NH4 - ISE
As nitrogen is essential nutrient for plants, it is an essential constituent of many fertilizers. It is present there in different forms, mainly as ammonium or nitrate. Knowing the nitrogen concentration and the form in which is present helps to select the right fertilizer for the plants. For producers of fertilizers, it is therefore necessary to indicate the concentration of ammonium nitrogen in their product.This Application Note shows how to determine ammonium in liquid fertilizers by means of a standard addition.
- AN-I-019Ammonium in Soil – Reliable determination by Standard Addition with NH4 - ISE
Nitrogen is essential for plant growth. In soil, it can be present in the form of nitrate, ammonium, or urea. Knowing the nitrogen content of soil and in which form it is present helps selecting the right kind of fertilizer to stimulate plant growth.This Application Note shows a fast and reliable way to determine the ammonium concentration in soil by using standard addition.
- AN-I-020Potassium in liquid and solid NPK fertilizers – Fast and inexpensive determination using the ionselective electrode
NPK fertilizers are mainly comprised of three primary nutrients required for a healthy plant growth (nitrogen, phosphorous, potassium). They are available as liquid, or granular form, whereof the last is the most common used one. Knowing the quality and content of a fertilizer allows an optimal utilization for a planned culture and optimizing the amount of used fertilizer. This helps to reduce costs and to improve plant growth and with it, a better harvest follows.To assess potassium, several methods like flame photometry, titration, or ion measurement can be used. In this work, the potassium content is measured by standard addition which is a fast, inexpensive, and easy to use method.
- AN-I-021Potassium in soil – Fast and inexpensive determination by standard addition
To assess the quality of a soil it is necessary to know its nutrients. For example, it is necessary that the level of bio-available ions is known as a deficiency might negatively affect plant growth. One of the most important ions is potassiumwhich is directly absorbed in its ionic form by plants roots. It is an essential nutrient and required for proper growth and reproduction.One commonly used method to assess the K content is the extraction of phosphorous and potassium from soil with an acidic, to pH 4.1 buffered solution of calcium acetate, calcium lactate, and glacial acetic acid. This test is called calcium acetate lactate test (CAL-test). Commonly, the extract is analyzed by flame photometric method. In this application note we present a fast and inexpensive alternative using the potassium ion selective electrode.
- AN-I-022Potassium in surface water – Fast and inexpensive determination by direct measurement
Potassium is naturally occurring in surface water caused by weathering of stones and soil. As potassium in drinking water is regulated and should not exceed a certain threshold value, it is necessary to assess the potassium concentration.This can easily be done by direct measurement using a potassium selective electrode. First, a calibration is performed, afterwards, the samples are measured within tens of seconds. This is a fast, inexpensive and reliable method to determine the potassium content in various water samples.
- AN-I-023Fluoride in tea
One of the major sources of fluoride intake for humans comes from foodstuff, such as tea. Tea actually has one of the highest potentials to increase the daily fluoride intake. Excessive fluoride intake may lead to dental or skeletal fluorosis. The World Health Organization does not recommend consuming water with a fluoride content higher than 1.5 mg/L. In the presented method according to DIN 10807, the fluoride content can be assessed quickly with an ion selective electrode.
- AN-I-024Nitrate in surface water – Fast and inexpensive determination by direct measurement
Nitrate is naturally present in the environment. However, excessive concentrations of nitrate in surface and ground water are problematic as such concentrations have a negative effect on the water quality. Usually, excessive levels of nitrate area direct result of extensive usage of fertilizers in agriculture. Nitrate is easily washed from soils and can end up in surface or ground water. As the nitrate content is regulated in many countries, a quick and inexpensive assessment of its concentration is required to monitor the water quality.The nitrate concentration can easily be obtained by direct measurement using a nitrate ion selective electrode. First, a calibration is performed, afterwards, the samples are measured in less than a minute.This is a fast, inexpensive and reliable method to determine the nitrate content in various water samples.
- AN-I-025Purity of lucigenin by nitrate determination – Fast and inexpensive determination by standard addition
Lucigenin is one of the most often used chemiluminescent reagents and might be used for e.g., the indication of the presence of superoxide anion radicals.Lucigenin is rather expensive to buy, however, its synthesis only includes a two stage synthesis starting from acridanone. The first stage includes an Nmethylation, the second forms the lucigenin chloride, which is finally transformed into lucigenin nitrate. To check the purity of the synthesized lucigenin, ion measurement can be applied using a nitrate selective electrode. This is a fast and inexpensive method compared to competing methods such as ion chromatography.
- AN-I-026Fluoride in leachate – Fast determination of fluoride using direct measurement
Increased fluoride concentrations in water may cause tooth damage, growth disorders, and bone deformation. According to the World Health Organization (WHO), concentrations above 1.5 mg/L are critical.One possible source of fluoride is landfills. Rain washes out harmful substances from landfills which can enter the groundwater. The leachate from landfills should thus be monitored for the fluoride concentration.Ion measurement is a fast and inexpensive method to determine the fluoride content in water samples compared to other methods such as ion chromatography. This Application Note describes a reproducible and accurate measurement of the fluoride content using the fluoride ion-selective electrode with an OMNIS system.
- AN-I-027Dissolved oxygen in fruit juices
Dissolved oxygen (DO), incorporated into juices during processing, affects quality parameters of the beverage during storage such as Vitamin C concentration, color, and aroma. Various oxygen removal methods are used during juice production, such as vacuum-deaeration or gas sparging to increase product quality and extend shelf life. However, these methods have the drawback that the aroma might be affected since the volatile compounds are also removed. By assessing the DO content in fruit juices, manufacturers can improve the overall product quality. This application note describes a fast and accurate determination of dissolved oxygen in juices by using an optical sensor.
- AN-I-028Dissolved oxygen in surface water
Oxygen diffuses into water sources from the air via aeration, however several factors can reduce the dissolved oxygen (DO) content in water. First, as water warms up, oxygen is released into the atmosphere. Secondly, oxygen is consumed by bacteria and other microorganisms which feed on organic material. Finally, plants can also consume oxygen in certain situations.Human-induced alterations can have a negative influence on surface water when DO values fall below crucial limits for maintaining the life supporting capacity of freshwater ecosystems. Therefore, monitoring the DO content in surface water by an optical sensor to assess its quality is important.
- AN-I-029Dissolved oxygen in wine
Dissolved oxygen (DO) is generally considered detrimental to wine quality, especially if introduced after fermentation, storage, or bottling. The presence of oxygen after primary fermentation and during the later stages of winemaking can enhance browning reactions, chemical and microbiological instability, and the formation of off-flavors such as acetaldehyde. Knowing the DO content in wine is important through the entire wine production process, because oxidation is a common fault in bottled wines. With the 913 pH/DO meter and the 914 pH/DO/Conductometer, the oxygen content of wine can be determined quickly and easily directly on site.
- AN-I-030Dissolved oxygen in tap water
In municipal water supplies, higher dissolved oxygen (DO) content is desirable because it improves the taste of drinking water. However, high DO levels also speed up corrosion in water pipes. For this reason, industries utilize water with as little DO as possible, and add scavengers such as sodium sulfite to remove any oxygen from a water supply. Municipal water supply pipes are normally coated inside with polyphosphates to protect the metal from contact with oxygen, thus allowing higher DO contents. Therefore, monitoring the DO content online in a water supply is important to assess its DO content to either improve taste or minimize pipe corrosion. Using an optical sensor, such as the O2-Lumitrode, allows a fast and reliable determination according to ISO 17289.
- AN-I-031Dissolved oxygen in acrylic dispersion paint
Acrylic dispersion paints are made of pigment suspended in acrylic polymer emulsions, which also include other organic material such as plasticizers, defoamers, or stabilizers. Acrylic dispersion paints are water-soluble but become resistant to water when dry. Due to the fact that once dry, acrylic dispersion paints can no longer be used, they should be stored air-tight at room temperature. For research purposes, it is of interest to assess the dissolved oxygen (DO) concentration in such samples as it is assumed that the DO amount can be related to the storage life. This Application Note describes a fast and accurate determination of dissolved oxygen by using an optical sensor.
- AN-I-032Dissolved oxygen, conductivity, and pH value in liquid dairy products
In the food industry, it is essential to determine and monitor certain quality parameters to guarantee consistency. This is especially important for liquid dairy products, which are subject to a strict cold chain. Both the dissolved oxygen (DO) and the pH value have proven to be reliable quality criteria. Oxygen shortens the shelf life and influences the product quality (e.g., nutritional value, color, and flavor). The DO content depends on the salinity in the sample, which is automatically calculated and corrected by the 914 pH/DO/Conductometer during the parallel conductivity measurement. Acidity is another important characteristic to measure that can be checked easily using the pH value. With the 914 pH/DO/Conductometer, all important quality criteria can be monitored with one device.
- AN-I-033Determination of ammonia in cacao
This Application Note offers an easy way to determine the ammonia content in cacao nibs by using ion measurement, applying the standard addition technique in a reliable cost- and time-saving manner.
- AN-I-034Investigation of nucleation processes with automated titrators
This Application Note covers the formation of calcium carbonate from solution.
- AN-I-035Sodium content in food using an ion-selective electrode
Excess sodium intake increases the risk of health issues. Ion-selective electrodes (ISEs) offer a fast, accurate, and cost-effective method for measuring sodium in food.
- AN-I-036Sodium content in water using an ion-selective electrode
Groundwater contains many minerals, but can be contaminated by sodium-rich leachate from landfills. Accurate Na determination in water is possible following AOAC 976.25 using the Na-ISE.
- AN-K-001Water in potassium chlorate (KClO3)
The water content of potassium chlorate is determined according to Karl Fischer using the oven method (300 °C).
- AN-K-002Water in methyl ethyl ketone peroxide (butanone peroxide)
The water content of methyl ethyl ketone peroxide is determined according to Karl Fischer using two-component reagents in order to prevent unwanted side reactions. (Separate solvent is used to ensure a high excess of sulphur dioxide and amine in the titration vessel.)
- AN-K-003Water in ammonium and potassium peroxodisulfate (persulfates)
The water content of ammonium and potassium peroxodisulphate is determined according to Karl Fischer using two-component reagents. To prevent unwanted side reactions the determinations are carried out at -20 °C. Because the potassium salt is insoluble in the solvent, a high-frequency homogenizer is used to disintegrate the salt particles.
- AN-K-004Water in lyophilizates (e.g., vaccines in sample vials)
The water content of lyophilisates contained in vials is determined by Karl Fischer titration. Conditioned solvent (methanol) is injected into the vial to dissolve the sample and extract the water (ultrasonic bath). Afterwards the contents of the vial are transferred to the titration vessel to carry out the automatic determination.
- AN-K-005Water in ink
Determination of water content in ink is possible with Karl Fischer titration, as shown in this Application Note.
- AN-K-006Water in ointments
The water content of ointments is determined according to Karl Fischer. Because of their high water and fat content, the samples are prediluted with a 1:1 mixture of chloroform and methanol.
- AN-K-007Water in yoghurt powder
The water content of yoghurt powder is determined according to Karl Fischer. Because of the relatively high water and fat content, the sample is prediluted with a 1:1 mixture of chloroform and methanol.
- AN-K-008Water in plastic chips
The water content of plastic chips is determined according to Karl Fischer. Because of the low water content of the sample, the oven method (200 °C) and coulometric titration have to be used.
- AN-K-009Water in explosive pellets
The water content of explosive pellets is determined according to Karl Fischer after extraction with methanol.
- AN-K-010Water in coal dust
The water content of coal dust is determined according to Karl Fischer. Because of the low water content of the voluminous sample, the oven method (nitrogen, 270 °C) and coulometric titration have to be used.
- AN-K-011Water in moisturizing creams (cosmetic products)
The water content of moisturising creams is determined according to Karl Fischer. Because of their high water content, the samples are first mixed and prediluted with dry methanol.
- AN-K-012Water in turbine oil
The water content of turbine oil is determined according to Karl Fischer. Because of the low water content of the sample, coulometric titration is used.
- AN-K-013Water in organic peroxides
The water content of organic peroxides is determined according to Karl Fischer using two-component reagents. To prevent any unwanted side reactions, the determinations are carried out at -20 °C.
Did you know?
A glass buret would need to be 30 m long to achieve the same accuracy as our piston burets.
Show another