Application Finder
- AB-186Determination of aluminum in water samples by adsorptive voltammetry
This Bulletin describes the voltammetric determination of aluminum in water samples down to a concentration of 1 μg/L. An aluminum complex is formed with alizarin red S (DASA) and enriched at the HMDE. The following determination employs differential pulse adsorptive stripping voltammetry (DP-AdSV). Disturbing Zn ions are eliminated by addition of CaEDTA.
- AB-196Determination of formaldehyde by polarography
Formaldehyde can be determined reductively at the DME. Depending on the sample composition it may be possible to determine the formaldehyde directly in the sample. If interferences occur then sample preparation may be necessary, e.g. absorption, extraction, or distillation.Two methods are described. In the first method formaldehyde is reduced directly in alkaline solution. Higher concentrations of alkaline or alkaline earth metals interfere. In such cases the second method can be applied. Formaldehyde is derivatized with hydrazine forming the hydrazone, which can be measured polarographically in acidic solution.
- AB-199Determination of sulfide and sulfite by polarography
Sulfide and sulfite can be determined polarographically without any problems. For sulfide, polarography is performed in an alkaline solution, for sulfite in a slightly acidic primary solution. The method is suitable for the analysis of pharmaceuticals (infusion solutions), wastewater/flue gas water, photographic solutions, etc.
- AB-207Determination of silver by anodic stripping voltammetry at the carbon RDE
This Application Bulletin describes the stripping analysis of Ag at the rotating disk electrode (RDE) with glassy carbon tip (GC) or Ultra Trace graphite tip. In routine operation, the determination limit lies at approx. 10 μg/L Ag, with careful work 5 μg/L Ag can be obtained. After appropriate digestion, silver determination is also possible with samples containing a relatively high proportion of organic substances (e.g. wine, foodstuffs etc.). The method has been developed primarily for water samples (well, ground and wastewater, desilvering solutions of the photographic industry).
- AB-220Determination of platinum and rhodium in the ultratrace range by adsorptive stripping voltammetry
This Application Bulletin describes …
- AB-221Standard methods in water analysis
This Bulletin gives a survey of standard methods from the field of water analysis. You will also find the analytical instruments required for the respective determinations and references to the corresponding Metrohm Application Bulletins and Application Notes. The following parameters are dealt with: electrical conductivity, pH value, fluoride, ammonium and Kjeldahl nitrogen, anions and cations by means of ion chromatography, heavy metals by means of voltammetry, chemical oxygen demand (COD), water hardness, free chlorine as well as a few other water constituents.
- AB-226Determination of arsenic by stripping voltammetry at the rotating gold electrode
This Bulletin describes the determination of arsenic by anodic stripping voltammetry (ASV) at the rotating gold electrode. A determination limit of 0.5 μg/L can be achieved with 10 mL sample solution. A differentiation between the As(III) concentration and the total arsenic concentration can be made by appropriate selection of the deposition potential. The analyses are performed with a special gold electrode whose active surface is located laterally; c(HCl) = 5 mol/L is used as supporting electrolyte. For the determination of the total arsenic content, As(III) and As(V) are reduced at -1200 mV by nascent hydrogen to As0, which is preconcentrated on the electrode surface. If the deposition is carried out at -200 mV then only As(III) is reduced; this allows the differentiation between total arsenic and As(III). During the subsequent voltammetric determination the preconcentrated As0 is again oxidized to As(III).
- AB-230Potentiometric determination of nonionic surfactants based on polyoxyethylene adducts with the NIO electrode
The titrimetric determination of nonionic surfactants on the basis of polyoxyethylene adducts (POE adducts) is described in the Bulletin. The basis for the determination is the transfer of the nonionic surfactant into a pseudo-cation compound and its precipitation titration with sodium tetraphenylborate (Na-TPB). The NIO electrode is used for the indication of the potentiometric titration. This Bulletin describes determinations in raw products, formulations and wastewater and draws attention to special features, possibilities, limits and disruptions.
- AB-231Determination of zinc, cadmium, lead, copper, thallium, nickel and cobalt in water samples by anodic and adsorptive stripping voltammetry according to DIN 38406-16
The standard method postulated by DIN 38406 Part 16 describes the determination of Zn, Cd, Pb, Cu, Tl, Ni, and Co in drinking, ground, surface and precipitation (e.g. rain) water. Because the presence of organic substances in the water samples can strongly interfere with the voltammetric determination, a pretreatment with UV digestion using hydrogen peroxide is necessary. This digestion ensures the elimination of all organic substances without introduction of blank values. These methods can, of course, also be applied for trace analysis in other materials, e.g. trace analysis in the production of semiconductor chips based on silicon. Zn, Cd, Pb, Cu, and Tl are determined on the HMDE by means of anodic stripping voltammetry (ASV), Ni and Co by means of adsorptive stripping voltammetry (AdSV).
- AB-241Determination of cadmium and lead by anodic stripping voltammetry at a mercury film electrode
This Application Bulletin describes the determination of cadmium and lead at a mercury film electrode (MFE) by anodic stripping voltammetry (ASV). The mercury film is plated ex situ on a glassy carbon electrode and can be used for up to one day. With a deposition time of 30 s, the limit of detection is ß(Cd2+) = 0.02 µg/L and ß(Pb2+) = 0.05 µg/L. The linear working range for both elements goes up to approx. 50 μg/L using the same deposition time.
- AB-242Determination of tungsten by anodic stripping voltammetry at the Ultra Trace graphite RDE
The method described allows the determination of W(VI) traces in the range 0.2 to 50 µg/L (ppb). Traces of organic compounds present in the samples (e.g. natural waters) interfere. They have to be removed by UV digestion (e.g. 705 UV Digester). Interference by Fe(III) up to a concentration of 100 mg/L is eliminated by reduction to Fe(lI) with ascorbic acid. If the amount of Cu(II) in the sample exceeds the amount of W(VI) by a factor of 200 or more, the Cu ions have to be bound with thiourea. Moreover, the concentration of Cu(II) should not exceed 5 mg/L. The determination is made by adsorptive stripping analysis in the DP mode.
- AB-243Determination of chromium by adsorptive stripping voltammetry at the Ultra Trace graphite RDE
The method describes the determination of Cr traces in a range between 1 ... 250 μg/L. The method is based on the adsorption of a Cr(lll)-diphenylcarbazonate complex on the Ultra Trace graphite rotating disk electrode (RDE). Organic compounds present in samples (e.g. natural waters) have a strong interfering effect. So they have to be removed by e.g. UV digestion. The determination is made by adsorptive stripping voltammetry in the DC (direct current) measuring mode. Purging with nitrogen is not necessary. The determinations work well also in high salt concentration solutions.
- AB-249Determination of free and residual chlorine based on DIN EN ISO 7393-1 and APHA 4500-Cl
Chlorine is frequently added to drinking water for disinfection. Depending on the reactivity and the concentration of chlorine, toxic disinfection by-products (DBPs) can thereby be released. Therefore, it is necessary to strictly control the chlorine concentration in the drinking water. This Application Bulletin shows how to determine the chlorine concentration according to three standard methods: DIN EN ISO 7939-1, APHA 4500-Cl Method B, and APHA 4500-Cl Method I.
- AB-254Determination of zinc, cadmium and lead by anodic stripping voltammetry at a mercury film electrode
This Application Bulletin describes the determination of zinc at a mercury film electrode (MFE). Zinc can also be determined simultaneously with cadmium and lead. The determination of copper at the MFE is not possible. The mercury film is plated ex-situ on a glassy carbon electrode and can be used for half a day up to one day.Zinc can be determined at the mercury film electrode by anodic stripping voltammetry (ASV). The presence of copper, which is naturally present in many samples, affects the determination of zinc due to the formation of an intermetallic compound. As a result the determined concentrations of zinc are too low. The addition of gallium can eliminate the interference to a certain extent since the intermetallic complex of gallium and copper is more stable than the complex of zinc and copper.With a deposition time of 10 s, the limit of detection is β(Zn2+) = 0.15 μg/L. The linear working range goes up to approx. 300 μg/L.With the deposition time of 10 s the method is suitable for samples between 10 μg/L and 150 μg/L Zn content. For samples with lower concentrations the results are more reliable if the deposition time is increased to e.g. 30 s. Samples with higher concentrations have to be diluted.
- AB-266Determination of titanium by adsorptive stripping voltammetry
This Application Bulletin describes the determination of titanium by adsorptive stripping voltammetry (AdSV) using mandelic acid as complexing agent. The method is suitable for the analysis of ground, drinking, sea, surface and cooling waters, in which the concentration of titanium is of importance. The methods can, of course, also be used for the trace analysis in other matrices.The limit of detection is approx. 0.5 µg/L.
- AB-317Determination of iron in the µg/L-range by polarography
This Application Bulletin describes two methods for the determination of iron at the Multi Mode Electrode.Method 1, the polarographic determination at the DME, is recommended for concentrations of β(Fe) > 200 μg/L. For this method the linear range is up to β(Fe) = 800 μg/L.For concentrations < 200 μg/LMethod 2, the voltammetric determination at the HMDE, is to be preferred. The detection limit for this method is β(Fe) = 2 μg/L, the limit of quantification is β(Fe) = 6 μg/L. The sensitivity of the method cannot be increased by deposition.Iron(II) and iron(III) have the same sensitivity for both methods.These methods have been elaborated for the determination of iron in water samples. For water samples with high calcium and magnesium concentrations such as, for example, seawater, a slightly modified electrolyte is used in order to prevent precipitation of the corresponding metal hydroxides. The methods can also be used for samples with organic loading (wastewater, beverages, biological fluids, pharmaceutical or crude oil products) after appropriate digestion.
- AB-416Determination of arsenic in water with the scTRACE Gold
This Application Bulletin describes the determination of arsenic in water samples by anodic stripping voltammetry using the scTRACE Gold sensor. This method makes it possible to distinguish between As(total) and As(III). With a deposition time of 60 s, the limit of detection for As(total) is 0.9 µg/L, for As(III) it is 0.3 µg/L.
- AB-422Determination of mercury in water using scTRACE Gold
This Application Bulletin describes the determination of inorganic mercury in water samples by anodic stripping voltammetry using the scTRACE Gold sensor. With a deposition time of 90 s, calibration is linear up to a concentration of 30 µg/L; the limit of detection lies at 0.5 µg/L.
- AB-429Determination of copper in water with the scTRACE Gold
Copper is one of the few metals which is available in nature also in its metallic form. This and the fact that it is rather easy to smelt led to intense use of this metal already in the so-called Copper and Bronze Age. Nowadays, it is more important than ever, because of its good electrical conductivity and its other physical properties. For plants and animals, it is an essential trace element; for bacteria, in contrast, it is highly toxic.This Application Bulletin describes the determination of copper by anodic stripping voltammetry (ASV) using the scTRACE Gold electrode. With a deposition time of 30 s, the limit of detection is about 0.5 μg/L.
- AB-430Determination of uranium by adsorptive stripping voltammetry according to DIN 38406-17
This Application Bulletin describes the methods for the determination of uranium by adsorptive stripping voltammetry (AdSV) according to DIN 38406 part 17. The method is suitable for the analysis of ground, drinking, sea, surface and cooling waters, in which the concentration of uranium is of importance. The methods can, of course, also be used for the trace analysis in other matrices.Uranium is determined as chloranilic acid complex. The limit of detection in samples with low chloride concentration is about 50 ng/L and in seawater about 1 µg/L. Matrices with high chloride content can only be analyzed after reduction of the chloride concentration by means of a sulfate-loaded ion exchanger.
- AB-431Determination of iron, copper and vanadium by adsorptive stripping voltammetry
This Application Bulletin describes the voltammetric determination of the elements iron, copper and vanadium. Fe as well as Cu and V can be determined as catechol complex at the HMDE by adsorptive stripping voltammetry (AdSV). Fe(II) and Fe(III) are determined as Fe(total) with the same sensitivity for both species in either phosphate buffer or PIPES electrolyte. Cu and V can be determined in PIPES buffer.The methods are primarily suitable for the investigation of ground, drinking and surface waters, in which the concentration of these metals is important. But the methods can naturally also be used for trace analysis in other matrices.The limit of detection for all three elements in PIPES buffer is 0.5 ... 1 µg/L, for iron in phosphate buffer it is approx. 5 µg/L.
- AB-433Determination of lead in water with the scTRACE Gold modified with a silver film
Lead is known to be highly toxic and lead salts are easily absorbed by creatures. By interfering with enzyme reactions,lead can affect all parts of the human body. It can cause severe damage to brain and kidneys and can cross the bloodbrain barrier. Cases of chronic lead poisoning caused by lead metal used in the water piping system are well known. Therefore, the control of drinking water for lead content is of utmost importance. In many countries (e.g., EU, USA), the limit for lead in drinking water is between 10 and 15 μg/L. These concentrations can reliably be determined with the method described in this Application Bulletin. The determination is carried out by anodic stripping voltammetry at a silver film applied to the scTRACE Gold electrode.
- AB-435Connection of the Eco Titrator to the PC
Eco Titrators provide the capability to send PC/LIMS reports directly to a PC. This feature is mainly used to transfer data to an external LIMS system or to simply store the data in a digitally on the PC. Additionally, it is possible to control the Eco Titrator by RS232 commands if the connection is set up according to the procedure described below.The data transfer from the Eco Titrator to a PC can be done by a software- or a hardware-based option. Additional accessories are needed for the hardware-based option whereas for the software-based option two additional softwares must be installed. Both solutions are described in this document.
- AB-436Installation instructions TitrIC flex I
The TitrIC flex I system is used for the fully automatic analysis of water samples using direct measurement, titration, and ion chromatography. The following parameters are determined within a very short time: temperature, conductivity, pH, alkalinity, water hardness, and in parallel, the concentrations of individual anions. Further Metrohm instruments can be incorporated in the existing system at any time and used to measure additional parameters. This Application Bulletin describes in detail the installation instructions for the TitrIC flex I system.
- AB-437Installation instructions TitrIC flex II
The TitrIC flex II system is used for the fully automatic analysis of water samples using direct measurement, titration, and ion chromatography. The following parameters are determined within a very short time: temperature, conductivity, pH, acid capacity, and in parallel, the concentrations of individual anions and cations with the resulting water hardness and ion balance. Further Metrohm instruments can be incorporated in the existing system at any time and used to measure additional parameters. This Application Bulletin describes in detail the installation instructions for the TitrIC flex II system.
- AB-438Determination of cadmium and lead in water samples by anodic stripping voltammetry with a Bi drop electrode
Heavy metals, particularly cadmium and lead, are known to be highly toxic to humans. Therefore, controlling the cadmium and lead content in drinking water is of utmost importance. In many countries, the limit in drinking water for cadmium is between 3–5 µg/L, and for lead it is between 5–15 µg/L. These trace concentrations can reliably be determined with the method described in this Application Bulletin. The determination is carried out by anodic stripping voltammetry (ASV) using the non-toxic Bi drop electrode in a slightly acidic electrolyte.
- AB-439Voltammetric determination of iron in water samples with a Bi drop electrode
Iron is an essential element in the human diet and is found in many natural and treated waters. Therefore, the World Health Organization (WHO) does not issue a health-based guideline value for iron. Higher concentrations of iron in surface waters can indicate the presence of industrial effluents or outflow from other operations and sources of pollution. Because of this, precise, rapid, and accurate iron determination at low concentrations in environmental and industrial samples is of great importance. This can be achieved with the method described in this Application Bulletin.
- AB-440Determination of nickel and cobalt in water samples by adsorptive stripping voltammetry with a Bi drop electrode
Cobalt is an essential element for humans because it is a component of vitamin B12. While small overdoses of cobalt compounds are only slightly toxic to humans, larger doses from 25–30 mg per day may lead to skin, lung, and stomach diseases, as well as liver, heart, and kidney damage, and even cancerous growths. The same is valid for nickel, which can lead to inflammation at higher concentrations. Drinking a large amount of water containing nickel can cause discomfort and nausea. In the EU the legislation specifies 0.02 mg/L as the limit value for the nickel concentration in drinking water. This concentration can be reliably determined with the method described in this Application Bulletin.
- AN-C-056Sodium, ammonium, methylamine, guanidine, and aminoguanidine in wastewater
Determination of sodium, ammonium, methylamine, guanidine (Gu), and aminoguanidine (Agu) in wastewater using cation chromatography with direct conductivity detection.
- AN-C-060Magnesium, strontium, and barium in produced water (11 g/L sodium)
Determination of magnesium, strontium, and barium in produced water using cation chromatography with direct conductivity detection.
- AN-C-066Four cations in the water soluble fraction of a washing powder
Determination of sodium, potassium, calcium, and magnesium in the water soluble fraction of a washing powder using cation chromatography with direct conductivity detection.
- AN-C-071Choline in a saline solution
Determination of sodium, potassium, DMEA (dimethylethanolamine), calcium, choline, and magnesium in a saline solution using cation chromatography with direct conductivity detection.
- AN-C-099Lanthanides in a rock sample by ion chromatography using non-suppressed conductivity detection
Determination of traces of gadolinium, samarium, neodymium, cerium, and lanthanum using cation chromatography with direct conductivity detection after Metrohm Inline Filtration.
- AN-C-103Standard cations in lake water on the Metrosep C 3 - 250/4.0 column
Determination of lithium, sodium, potassium, magnesium, and calcium in lake water using cation chromatography with direct conductivity detection.
- AN-C-114Semi-continuous determination of cations in aerosol using PILS-IC
Determination of sodium, ammonium, potassium, magnesium, and calcium in an ambient aerosol (PM2.5) using aerosol sampling with the PILS (Particle Into Liquid Sampler) and cation chromatography with direct conductivity detection.
- AN-C-130Cations in offshore effluent
Determination of lithium, sodium, ammonium, potassium, manganese, calcium, magnesium, strontium, and barium in an offshore effluent using cation chromatography with direct conductivity detection.
- AN-C-143Ammonia in addition to standard cations in maritime pore water
Maritime pore water contains sodium in the percentage range. The analysis of ammonia in this kind of sample requires a high column capacity and an exceptionally good separation of sodium and ammonia. These requirements are completely fulfilled by a 2 µL injection to the high-capacity Metrosep C 6 - 250/4.0 column.
- AN-C-144Variable Inline Preconcentration including matrix elimination for trace cation determination (MiPCT-ME)
Metrohm Inline Preconcentration Technique with matrix elimination (MiPCT-ME) is a powerful method that combines preconcentration, matrix elimination, and multilevel calibration. In this Application Note, the methodology is applied to the determination of traces of sodium in addition to 2 mg/L ammonia. The Metrosep C 6 - 250/4.0 column is used for selectivity reasons.
- AN-C-145Ammonium traces besides excess sodium using 940 Professional IC Vario and direct conductivity detection
The determination of low ammonium concentrations besides excess sodium is demanding due to the small retention time difference of these two cations. This Application Note shows direct conductivity detection as an ideal means to detect ammonium in a wastewater sample containing 400 mg/L sodium. AN-S-313 shows the analysis of nitrite traces.
- AN-C-154Fast IC: Cations in drinking water on a high-capacity column in eleven minutes
Fast and handsome IC! Outstanding peak shapes on columns with the standard flow rate and a strong eluent. When the high-capacity Metrosep C 6 - 250/4.0 is used, this usually means long retention times. A strong eluent allows however the determination of the cations in drinking water in a short run time with very symmetrical peaks.
- AN-C-172Cations in snow from an open field
Cation content in snow is greatly dependent on sampling site. Samples from remote areas are expected to exhibit lower cation concentrations. This application shows the analysis of a snow sample from an open field in an agricultural zone. Separation is performed on a microbore Metrosep C 6 - 100/2.0 column with direct conductivity detection. The relatively high ammonia content can be explained by animal husbandry in the vicinity of the sampling site.
- AN-C-173Cations in roadside snow
Cation content in snow is greatly dependent on sampling site. Roadside samples are likely to exhibit a high sodium content caused by the use of road salt. This application shows the analysis of a snow sample from a roadside. Separation is performed on a microbore Metrosep C 6 - 250/2.0 column with direct conductivity detection. The 250 mm column was selected due to the large difference in concentrations between sodium and ammonia. This condition enables a baseline separation of the two cations.
- AN-C-192Cations in sodium rich wastewater
Wastewaters often contain high loads of sodium, making the determination of minor cations quite a challenge. In the present wastewater study, the determination of lithium, ammonium, zinc, strontium, and barium is requested. If the sodium concentration exceeds 2 g/L, this negatively influences the peak shape of closely eluting peaks. Applying a appropriate dilution factor to the sample enables the quantification of minor cations. Therefore zinc and barium can be properly quantified with a dilution ratio of 1:2, while lithium and ammonium require minimum dilution factors of at least 1:10 and 1:100, respectively.
- AN-C-193Alkyl amines in scrubber solutions
Harmful industrial flue gases like H2S and CO2 cause corrosion of pipes and damage the environment. Adding the correct amount of amines in scrubber solutions, e.g. ethanolamines and methylamines, will neutralize these gases («gas sweetening»). Non-suppressed cation analysis with direct conductivity detection is a straightforward and robust technique for the quantification of monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), monomethylamine (MMA), dimethylamine (DMA), and trimethylamine (TMA) via ion chromatography. Thanks to the high capacity of the Metrosep C 6 column, large volumes can be injected without compromising the peak shapes. The analytical technique can be used at laboratory scale but also for process analysis.
- AN-C-195Cation quantification with increased performance using microbore IC
Microbore ion chromatography offers better sensitivity, shorter retention times, and consumes less eluent, increasing sample throughput and reducing running costs.
- AN-CIC-020Fluorine in coal sample applying Metrohm Combustion IC
Coal contains a certain amount of fluorine, chlorine, and sulfur compounds. During combustion of the coal, these components release corrosive acids (e.g., fluorine compounds form hydrofluoric acid). Thermal power plants therefore request low-fluorine coal to avoid massive hydrofluoric acid production. In this application note, fluorine content in coal is determined by ion chromatography after pyrohydrolysis.
- AN-CIC-033Monitoring PFASs in water sources
AOF (adsorbable organic fluorine) is used to screen for per- and polyfluorinated alkyl substances in aqueous matrices via pyrohydrolytic combustion and ion chromatography.
- AN-CIC-034Fast analysis of AOX in waters by CIC
Combustion ion chromatography (CIC) measures AOX (adsorbable organically bound halogens, i.e., AOCl, AOBr, AOI) and AOF as well as CIC AOX(Cl) according to DIN 38409-59 and ISO/DIS 18127.
- AN-CIC-035Halogens and sulfur in solid samples according to EN 17813
Organic halides must be monitored in the environment. Combustion ion chromatography (CIC) is used for accurate halogen analysis in solids following EN 17813:2023.
- AN-COR-010Electrochemical Corrosion Studies of Various Metals
Corrosion of metals is a problem seriously affecting not only many industrial sectors, but also private life, resulting in enormous costs. In this application note, the results gained during electrochemical corrosion studies on different metals are compared to literature data.