Application Finder
- AN-V-210Total arsenic in mineral water
Arsenic is ubiquitous in the earth’s crust in low concentrations. Elevated levels can be found in mineral deposits and ores. Arsenic from such deposits leaches into the groundwater in the form of arsenite (AsO33–) and arsenate (AsO43–), causing its contamination. In addition to the arsenic originating from natural sources, industry and agriculture contribute to the contamination to a lower extent. The guideline value for inorganic total arsenic in the World Health Organization’s «Guidelines for Drinking-water Quality» is set to 10 μg/L. With a limit of detection (LOD) of 0.9 μg/L, anodic stripping voltammetry is a viable, less sophisticated alternative to atomic absorption spectroscopy (AAS) for the determination of arsenic. While AAS (and competing methods) can only be performed in a laboratory, anodic stripping voltammetry can be used conventionally in the laboratory or alternatively in the field using the 946 Portable VA Analyzer. The determination is carried out on the scTRACE Gold electrode.
- AN-V-211Arsenic(III) in mineral water
Arsenic is ubiquitous in the earth’s crust in low concentrations. Elevated levels can be found in mineral deposits and ores. Arsenic from such deposits leaches into the groundwater in the form of arsenite (AsO33–) and arsenate (AsO43–), causing its contamination. As(III) is more toxic than As(V) and shows higher mobility in the environment. The selective determination of this species is possible using the method described in this document.With a limit of detection (LOD) of 0.3 μg/L, anodic stripping voltammetry allows speciation, i.e. the specific determination of As(III). While atomic absorption spectroscopy (AAS) (and competing methods) can only determine the total element concentration, anodic stripping voltammetry is selective to the As(III) oxidation state. The determination is carried out on the scTRACE Gold electrode.
- AN-V-212Mercury in mineral water
Mercury and its compounds are toxic. The highest risk is posed by chronic poisoning with mercury compounds ingested with food. A significant part of the mercury present in the environment is of anthropogenic origin. Considerable sources are coal-fired power plants, steel, and nonferrous metal production, waste incineration plants, the chemical industry, or artisanal gold mining where the use of elemental mercury for the extraction of gold from the ore is still common. The guideline value for inorganic mercury in the World Health Organization’s «Guidelines for Drinking-water Quality» is set to 6 μg/L.With a limit of detection (LOD) of 0.5 μg/L, anodic stripping voltammetry is a viable, less sophisticated alternative to atomic absorption spectroscopy (AAS).While AAS (and competing methods) can only be performed in a laboratory, anodic stripping voltammetry can be used conventionally in the laboratory or alternatively in the field with the 946 Portable VA Analyzer. The determination is carried out on the scTRACE Gold electrode.
- AN-V-213Copper in drinking water
Higher levels of copper in drinking water are usually caused by corrosive action of water leaching copper from copper pipes. While copper is an essential nutrient for the human organism, ingestion of higher concentrations have an adverse effect on human health. The current World Health Organization’s «Guidelines for Drinking-water Quality» recommend a maximum concentration of 2000 μg/L. With a limit of detection (LOD) of 0.5 μg/L, anodic stripping voltammetry is a viable, less sophisticated alternative to atomic absorption spectroscopy (AAS) for the determination of copper in drinking water. While AAS (and competing methods) can only be performed in a laboratory, anodic stripping voltammetry can be used conventionally in the laboratory or alternatively in the field with the 946 Portable VA Analyzer. The determination is carried out on the scTRACE Gold electrode.
- AN-V-214Lead in drinking water
Lead is known to be highly toxic to humans as it interferes with enzyme reactions. Chronic lead poisoning can be caused by lead leaching into drinking water from piping systems. The current provisional guideline value in the World Health Organization’s «Guidelines for Drinking-water Quality» sets a maximum concentration of 10 μg/L. With a limit of detection (LOD) of 0.2 μg/L, anodic stripping voltammetry is a viable, less sophisticated alternative to atomic absorption spectroscopy (AAS) to determine lead in drinking water. While AAS (and competing methods) can only be performed in a laboratory, anodic stripping voltammetry can be used conventionally in the laboratory or alternatively in the field with the 946 Portable VA Analyzer. The determination is carried out on a silver film applied to the scTRACE Gold electrode.
- AN-V-215Zinc in drinking water with the scTRACE Gold
Zinc is an essential trace element for humans. Excessive intake of zinc in higher concentrations can be harmful, however. There is no guideline value for zinc in the World Health Organization’s «Guidelines for Drinking-water Quality» because typical levels usually found in drinking water are of no concern. Anodic stripping voltammetry is a viable, less sophisticated alternative to atomic absorption spectroscopy (AAS) for the determination of zinc in drinking water. While AAS (and competing methods) can only be performed in a laboratory, anodic stripping voltammetric determinations can be used conventionally in the laboratory or alternatively in the field using with 946 Portable VA Analyzer. The determination is carried out on the scTRACE Gold electrode.
- AN-V-216Iron in drinking water
Iron is an essential element in human nutrition. It can be present in drinking water as a result of water treatment or from corrosion in the water piping system. There is no guideline value for iron in the World Health Organization’s «Guidelines for Drinking-water Quality» because typical levels usually found in drinking water are of no concern. However, there are national limit values in various countries. The European Union has set a guideline indicator value for iron of 200 μg/L. Voltammetry is a viable, less sophisticated alternative to atomic absorption spectroscopy (AAS) for the determination of iron in drinking water. While AAS (and competing methods) can only be performed in a laboratory, anodic stripping voltammetric determinations can be done used conventionally in the laboratory or alternatively in the field using the with 946 Portable VA Analyzer. The determination is carried out with adsorptive stripping voltammetry (AdSV) using 2,3-dihydroxynaphthalene (DHN) on the scTRACE Gold electrode.
- AN-V-217Nickel, cobalt in drinking water
Nickel is widely used in stainless steel production. At high enough concentrations, it is known to cause allergic reactions when in contact with skin. Drinking water may be contaminated by taps which are made from metals containing nickel. The guideline value for nickel in the World Health Organization’s «Guidelines for Drinking-water Quality» is set to 70 μg/L. National limit values of typically lower at e. g. 20 μg/L. Cobalt usually occurs associated with nickel and can be found in smaller concentrations besides nickel. Adsorptive stripping voltammetry is a viable, less sophisticated alternative to atomic absorption spectroscopy (AAS) for the determination of nickel and cobalt in drinking water. While AAS (and competing methods) can only be performed in a laboratory, adsorptive stripping voltammetric determinations can be used in the laboratory or alternatively in the field with the 946 Portable VA Analyzer. The determination is carried out on a bismuth film applied to the scTRACE Gold electrode.
- AN-V-218Bismuth in drinking water
Bismuth is considered as a metal with a very low toxicity. In high concentrations toxic effects have been described, however. There is no guideline value for bismuth in the World Health Organization’s «Guidelines for Drinking-water Quality» because typical levels usually found in drinking water are of no concern. Anodic stripping voltammetry is a viable, less sophisticated alternative to atomic absorption spectroscopy (AAS) for the determination of bismuth in drinking water. While AAS (and competing methods) can only be performed in a laboratory, anodic stripping voltammetry can be used in the laboratory or alternatively in the field with the 946 Portable VA Analyzer. The determination is carried out on the scTRACE Gold electrode.
- AN-V-221Cadmium and lead in drinking water with a Bi drop electrode
To reduce the toxic effects of cadmium on the human body, as well as to limit the neurotoxic effects of lead, the provisional guideline values in the World Health Organization’s «Guidelines for Drinking-water Quality» are set to a maximum concentration of 3 µg/L for cadmium and 10 µg/L for lead. The completely mercury-free Bi drop electrode takes the next step towards converting voltammetric analysis into a non-toxic approach for heavy metal detection. Using this environmentally friendly sensor for anodic stripping voltammetry (ASV) allows the simultaneous determination of Cd and Pb in drinking water. The outstanding sensitivity is more than sufficient to monitor the provisional WHO guideline values.
- AN-V-222Iron determination in drinking water
The presence of iron in drinking water can lead to an unpleasant taste, stains, or even growth of «iron bacteria» that can clog plumbing and cause an offensive odor. Over a longer period, the formation of insoluble iron deposits is problematic in many industrial and agricultural applications. To avoid these problems, the U.S. Environmental Protection Agency (EPA) defines the Secondary Maximum Contaminant Level (SMCL) for water treatment and processing plants as 0.3 mg/L Fe in drinking water.The voltammetric determination of the iron triethanolamine complex on the non-toxic Bi drop electrode allows both the detection at very low levels (limit of detection of 0.005 mg/L) and measurements in a wide range of concentrations up to 0.5 mg/L.
- AN-V-223Nickel and cobalt in drinking water with a Bi drop electrode
The main sources of nickel pollution are electroplating, metallurgical operations, or leaching from pipes and fittings. Catalysts for the petroleum and chemical industries are major application fields for cobalt. In both cases, the metal is either released directly, or via the waste water-river pathway into the drinking water system. Therefore in the EU the legislation specifies 20 µg/L as the limit value for the Ni concentration in drinking water.The simultaneous and straightforward determination of nickel and cobalt is based on adsorptive stripping voltammetry (AdSV). The unique properties of the non-toxic Bi drop electrode combined with AdSV results in an excellent performance in terms of sensitivity.
- AN-V-224Nickel and cobalt in drinking water with a glassy carbon electrode
Due to the toxicity and the detrimental effects of nickel and cobalt on human health, their concentrations in drinking water must be controlled. Therefore, EU the legislation specifies 20 µg/L as the limit value for nickel in drinking water. The current provisional guideline value for Ni in the World Health Organization’s «Guidelines for Drinking-water Quality» is set to a maximum concentration of 70 µg/L. To monitor the concentrations of Ni and Co with the 884 Professional VA, a method for simultaneous determination on the glassy carbon electrode (GC-RDE) modified with a Bi film is used.
- AN-V-225Cadmium and lead in drinking water with a glassy carbon electrode
To reduce the toxic effects of cadmium on the kidneys, skeleton, and the respiratory system, as well as the neurotoxic effects of lead, the provisional guideline values in the World Health Organization’s (WHO) «Guidelines for Drinking-water Quality» are set to a maximum concentration of 3 µg/L for cadmium and 10 µg/L for lead.The powerful anodic stripping voltammetry (ASV) technique on the ex-situ mercury film modified glassy carbon electrode is more than sufficient to monitor the proposed WHO guidelines for Cd and Pb in drinking water.
- AN-V-226Zinc in drinking water with a glassy carbon electrode
No health-based guideline value exists for zinc. However, to maintain good quality municipal drinking water, the United States Environmental Protection Agency (US-EPA) set a maximum concentration of 5 mg/L as the limit value. Typical concentrations in surface and ground waters are between 10–40 μg/L Zn, with values up to 1 mg/L in tap water. Anodic stripping voltammetry (ASV) on the ex-situ mercury film modified glassy carbon electrode provides a less complex alternative to atomic absorption spectroscopy (AAS) for zinc determination in drinking water.
- AN-V-227Chromium(VI) in drinking water with a glassy carbon electrode
The guideline value for chromium in the World Health Organization’s (WHO) «Guidelines for Drinking-water Quality» is 50 µg/L. It should be noted here that chromium concentrations are often expressed as total chromium and not as chromium(III) or (VI). Chromium(VI) is responsible for changes in genetic material, and is found in significantly lower concentrations than Cr(III). Therefore an extremely sensitive method is required to monitor Cr(VI) in drinking water.The powerful adsorptive stripping voltammetry (AdSV) technique on the ex-situ mercury film modified glassy carbon electrode using DTPA as complexing agent can be used to determine such low concentrations.
- AN-V-228Thallium in drinking water
Presence of thallium in surface water is an indicator of industrial effluents and poses a serious health hazard if imbibed. Monitoring of thallium concentration can easily be done with anodic stripping voltammetry on the silver film modified scTRACE Gold. This non-toxic method allows the determination of thallium concentrations between 10–250 µg/L and can be carried out with the 946 Portable VA Analyzer.
- AN-V-229Antimony(III) in drinking water
The toxicity of antimony depends on its oxidation state: antimony(III) is more toxic than antimony(V). Due to its carcinogenicity, EU legislation specifies 5 µg/L and the World Health Organization (WHO) sets a maximum concentration of 20 µg/L as the Sb(III) limit value in drinking water.Straightforward determination using anodic stripping voltammetry provides a fast (analysis time under 10 minutes) and an ultra-sensitive tool for monitoring the antimony(III) concentration in drinking water. Measurements can be performed in the laboratory with the 884 Professional VA, or alternatively in the field with the 946 Portable VA Analyzer.
- AN-V-230Chromium(VI) in drinking water with the scTRACE Gold
The guideline value for total chromium in the World Health Organization’s (WHO) «Guidelines for Drinking-water Quality» is 50 µg/L. Chromium(VI) is more toxic than its trivalent form (Cr(III)) and is also less abundant. Therefore a robust and sensitive method is required to monitor its concentration in drinking water. The mercury film modified scTRACE Gold can be used to monitor chromium(VI), offering easy handling and a high grade of stability.
- AN-V-231Cadmium and lead in drinking water with screen-printed carbon electrodes
The provisional guideline values in the World Health Organization’s (WHO) «Guidelines for Drinking-water Quality» are set to 3 µg/L for cadmium and 10 µg/L for lead. The anodic stripping voltammetry (ASV) technique performed on the ex-situ mercury film modified Metrohm DropSens screen-printed electrode (SPE) can be used to simultaneously detect concentrations as low as 0.3 µg/L for both elements. This is suitable to monitor the WHO guideline values. The main advantage of this method lies in the innovative and cost-effective screen-printed electrode.
- AN-V-232Nickel and cobalt in drinking water with screen-printed carbon electrodes
EU legislation specifies 20 µg/L as the limit value for nickel in drinking water. The current provisional guideline value for Ni in the World Health Organization’s «Guidelines for Drinking-water Quality» is set to a maximum concentration of 70 µg/L. The adsorptive stripping voltammetry (AdSV) technique performed on the ex-situ bismuth film modified Metrohm DropSens 11L screen-printed electrode (SPE) can be used to simultaneously detect concentrations as low as 0.4 µg/L for nickel and 0.2 µg/L for cobalt with a 30 s deposition time.The disposable, maintenance-free sensor can be used conventionally in the laboratory with the 884 Professional VA, or alternatively in the field with the 946 Portable VA Analyzer. This method is best suited for manual systems.
- AN-V-233Selenium(IV) in drinking water
The difference between the toxic and essential levels of selenium to human health are very slight. Therefore, the current provisional guideline value for selenium(IV) in the World Health Organization’s «Guidelines for Drinking-water Quality» and in the European Drinking Water Directive is set to a maximum concentration of 10 µg/L.The anodic stripping voltammetric (ASV) technique performed on the unmodified scTRACE Gold can be used to determine concentrations as low as 0.5 µg/L selenium with a 30 s deposition time. These limits can be lowered even further by increasing the deposition time. The linear range at 30 s deposition time ends at approximately 100 μg/L. The scTRACE Gold electrode does not need extensive maintenance such as mechanical polishing. Measurements can be performed in the laboratory with the 884 Professional VA or alternatively in the field with the 946 Portable VA Analyzer. This method is suited for manual or automated systems.
- AN-V-234Tellurium(IV) in drinking water
Tellurium is one of the elements recently identified as technologically critical for photovoltaic conversion, quantum dots, as well as in thermoelectric technology, and has the potential to become a new emergent contaminant. Until now there is no guideline value in the World Health Organization’s «Guidelines for Drinking-water Quality» and in the European Drinking Water Directive for tellurium(IV) concentration in drinking water.To monitor the tellurium(IV) levels in drinking water, anodic stripping voltammetry (ASV) performed on the unmodified scTRACE Gold is recommended. This method allows determination of tellurium(IV) in the concentration range between 1 µg/L and 60 µg/L when using a 90 s deposition time. The scTRACE Gold electrode does not need extensive maintenance such as mechanical polishing. Measurements can be performed in the laboratory with the 884 Professional VA or alternatively in the field with the 946 Portable VA Analyzer.
- TA-004Trace determination of bromate in water
This article describes rapid and sensitive bromate determination in drinking and table water by means of anion chromatography with post-column derivatization and subsequent spectrophotometric detection.
- TA-015New analyses in environmental chemistry
Routine chemical analysis is dominated by the demand for a higher sample throughput and improved detection limits. This article describes compact analysis systems such as ion chromatography and voltammetry that determine bromate and uranium(VI) content in drinking and mineral waters quickly and reliably, in compliance with applicable standards and without sample preparation. Both methods can be readily automated and tailored to complex sample matrices.
- TA-020IC-MS and IC-ICP/MS analysis in the environment
This article describes the coupling of ion chromatography with mass spectrometry (IC-MS) and plasma mass spectrometry (IC-ICP/MS) for the trace analysis of potentially hazardous compounds in the environment.
- TA-022Determination of air quality with the MARGA system
This article describes the «Monitor for Aerosols & Gases in Ambient Air» (MARGA) system for air quality monitoring that simultaneously and continuously analyzes the composition of gases and aerosols in the ambient air.
- TA-023Investigation of MRT contrast media containing gadolinium by means of IC-ICP/MS analysis
This article describes the investigation using ion chromatography and subsequent inductively coupled plasma mass spectronomy (ICP/MS) to determine the extent to which the iron(III) flocculation carried out in the context of wastewater treatment releases toxic gadolinium(III) ions as the result of recomplexing.
- TA-036Automated pH determination in horticultural substances
Analysis service providers must apply great effort in order to offer quality-assured analyses of earth, water or seeds. This article describes automated analysis systems for pH determination that help maintain the required speeds and degrees of accuracy.
- TA-040Automation for the determination of chemical oxygen demand (COD)
In the event of a large number of samples, it makes sense to apply automation to the individual steps of COD determination. This article indicates the extent to which automation can be applied for the determination of chemical oxygen demand with the help of a system especially designed for that purpose.
- TA-044pH value, conductivity and titration in water and soil analysis
The rapid growth of the Earth's population has led to massive increases in the consumption of energy and resources and in the production of consumer products and chemicals. It is estimated that 17 million chemical compounds are currently on the market, of which 100,000 are produced on a large industrial scale. Many of these enter the environment. This leads to a demand for sensitive analytical procedures and high-performance analytical instruments.pH value, conductivity and oxygen requirement are important characteristics in water and soil analysis. The first two of these can be determined rapidly; for the third, the titration that is used is also the one used in numerous single determinations. This article describes several important standard-compliant determinations in water and soil analysis.
- TA-052IC-ICP-MS analysis of iodized X-ray contrast media
On the basis of the experiments that have been performed, it is possible to determine the effectiveness of the ozonization of iodized X-ray contrast media using IC-ICP-MS via the amount of iodate formed. Whereas a 120-minute ozonization guarantees a practically quantitative decomposition of amidotrizoic acid to iodate, approximately 16% of the Iomeprol is still present under the same ozonization conditions. Given that only 14% is present in iodate form in the absence of iodide anions and given that additional, not yet identified peaks occur in the ion chromatogram, the presence of additional decomposition products containing iodine must be assumed. Nonetheless, it is not possible to detect the intact iodized X-ray contrast media with the selected ion chromatographic conditions. Furthermore, the possibility exists of identifying the peak of the unknown decomposition product of the Iomeprol using IC-ESI-TOF-MS.
- TA-054Online monitoring of atmospheric inorganic gases and aerosols in the Southeast and Northwest of the United States
This article describes the composition of atmospheric inorganic gases and aerosols in the Southeast and Northwest of the United States during a time period of several weeks. The semicontinuous sampling in hourly cycles takes place using the MARGA system from Metrohm Applikon. The temporal resolution of the aerosol and gas composition makes it possible to generate statements regarding the chemical origin and hygroscopicity of the particles. These are fundamental for rating the influence of aerosols on the climate.
- TA-057Chromate in toys, leather and drinking water
Chromate is allergenic, carcinogenic and extremely toxic. It is therefore subject to strict monitoring. It is present in different concentrations in drinking water, toys, textiles, leather and many other materials. Metrohm has developed various methods for ion chromatographic determination of chromium(VI) which, thanks to Inline Sample Preparation, are suitable for a variety of matrices and concentration ranges – from ng/L to mg/L.
- TA-062Are you made of sugar?
Carbohydrates are derived from photosynthesis and are the main constituent of biomass. Depending on the context, the amount and composition of carbohydrates in a sample can reveal a wide range of different information. As a result, they are subject to analysis in various industries, e.g. in environmental and food analytics. Ion chromatography is ideal for this purpose. Some application examples are presented here.
- TA-064Aerosols without borders: Investigating long-range aerosol transport in Scotland
To gain insight into the effects of fine dust on health and the environment, we need long-term measurements that can detect the quantity and chemical composition of suspended particles at high temporal resolution. In the south-east of Scotland, these kinds of measurements are being taken as part of «EMEP», a program that focuses on the measurement and evaluation of the long-range, transboundary transmission of air-polluting substances in Europe. The program serves to regularly equip European governments with the scientific knowledge required to reduce air pollution and mitigate its effects.
- WP-004Electrochemistry in the environmental sciences
This Metrohm White Paper presents the important role of electrochemistry in the environmental sciences. The applications have to do with basic research for the fuel cell that yields energy from wastewater, the electrical clean-up of contaminated soil and electrochemical CO2 reduction of greenhouse gases for isolating chemical raw materials.
- WP-008Coupling of ion chromatography and plasma mass spectrometry
The coupling of ion chromatography and inductively coupled plasma mass spectrometry (ICP/MS) leads to a high-performance measurement system that masters several particularly challenging analyses. It enables for example reliable determination of element compositions, oxidation states and chemical bonds. This information is used, for example, for assessing the toxicity of medications, environmental and water samples as well as foods and beverages.
- WP-021Water analysis in the field: Determining arsenic, mercury, and copper
Heavy metals such as arsenic and mercury find their way into the ground water in many regions of the world, either through natural processes or as the result of human activities. Limit values are exceeded many times over, particularly for arsenic in drinking water, in many areas. This calls for a rigorous monitoring of water quality. The present whitepaper focuses on field determinations of arsenic, mercury, and copper – directly at the sampling site.
- WP-039Ion chromatography – addressing the latest challenges in environmental analysis
The analytical challenges of environmental analysis increase in difficulty from year to year. As well as analysis of particularly toxic types of metals such as chromium(VI), highly diverse and partially persistent organic fluorine compounds (e.g., trifluoroacetic acid) are presently in focus. The analysis of toxic oxohalides such as bromate and perchlorate is also a current subject of investigation.
- WP-056Determining dissolved oxygen in water – Titration or direct measurement?
«Dissolved oxygen» describes the amount of oxygen molecules (O2) which are dissolved in a liquid phase under certain conditions. In this white paper, two different methods for the analysis of dissolved oxygen, titration and direct measurement, are compared and contrasted to help analysts determine which method is more suitable for their specific applications. Here, we primarily focus on the determination of dissolved O2 in water. However, the same principle applies for other liquid phases such as non-alcoholic or alcoholic beverages.
- WP-060Multiparameter analysis in fertilizers: Fast and easy via thermometric titration
Agriculture at significant scale without fertilizers is no longer possible in the modern world. To grow a sufficient amount of produce for nearly 8 billion people as well as for domesticated animals and industrial uses, fertilizers of different nutrient compositions are available to cater to the unique needs of various soil types. Information on the fertilizer’s composition (e.g., total nitrogen, phosphorus, and potassium) is available to help select the ideal fertilizer for a specific soil. Conventionally these constituents are determined either gravimetrically (e.g., phosphorus, potassium, or sulfate) or with ICP-OES (e.g., phosphorus or potassium). These methods either have the disadvantages of long analysis times combined with laborious sample preparation (gravimetry), or require expensive instrumentation with high running costs (ICP-OES). This White Paper elaborates how thermometric titration is a fast and inexpensive alternative method to provide information on the content of various nutrients in different fertilizers.
- WP-066An introduction to ion chromatography mass spectrometry (IC-MS)
Ion chromatography mass spectrometry (IC-MS) is a powerful tool that can handle many challenging analytical tasks which cannot be performed adequately by IC alone. IC-MS is a robust, sensitive, and selective technique used for the determination of polar contaminants like inorganic anions, organic acids, haloacetic acids, oxyhalides, or alkali and alkaline earth metals. After separation of the sample components via IC, mass selective detection guarantees peak identity with low detection limits. The inclusion of automated Metrohm Inline Sample Preparation (MISP) allows not only water samples, but also chemicals, organic solvents, or post-explosion residues to be readily analyzed without need for extensive manual laboratory work. This White Paper explains the benefits of IC-MS over IC in certain cases, the hyphenation of IC and different MS systems, as well as related norms and standards.
- WP-075Simple determination of haloacetic acids (HAAs) in potable water with ion chromatography hyphenated to mass spectrometry
Haloacetic acids (HAAs) are commonly produced as disinfection byproducts (DBPs) from water treatment processes. Some HAAs are regulated by the authorities and have been classified as potentially carcinogenic. They have traditionally been analyzed by gas chromatography (GC), a technique that requires time-consuming sample extraction and derivatization, leading to higher costs per analysis. Ion chromatography hyphenated to mass spectrometry (e.g., single or triple quadrupole MS systems) is a powerful tool that can handle many challenging analytical tasks such as measuring μg/L levels of HAAs in potable water samples. This White Paper explains the benefits of using this hyphenated technique for the accurate measurement of HAAs in potable water.
- WP-082Measuring inorganic cations and amines with ion chromatography mass spectrometry (IC-MS)
This white paper presents IC-MS as powerful analysis technique. This multiparameter method determines various analytes such as inorganic cations and amines in one run.
- WP-086Measuring organic acids and inorganic anions with ion chromatography mass spectrometry
This White Paper focuses on selected IC-MS applications for the straightforward identification and quantification of organic acids and inorganic anions in different matrices.
- WP-087Green alternative methods for voltammetric analysis in different water matrices
This White Paper presents four different «green» sensors: the scTRACE Gold, screen-printed electrodes, the glassy carbon electrode, and the Bi drop electrode from Metrohm that can be used to determine low concentrations of heavy metals in different sample matrices, such as boiler feed water, drinking water, and sea water.
- WP-090Automated water hardness determination according to ASTM D8192
The ASTM D8192 standard allows analysts to determine water hardness in different water matrices by complexometry with automated photometric endpoint recognition, increasing the reproducibility and the precision of the results.
- WP-093Significant cost savings through dynamic ventilation during nitrification in wastewater treatment
This White Paper gives an overview of the energy-intensive nitrification process that converts ammonia into less harmful nitrogen compounds at wastewater treatment plants (WWTPs). It displays the results from a field test at a WWTP, showcasing the positive influence of single-method process analyzers on the efficiency of the nitrification process.
- WP-095The future of manufacturing and commercializing green ammonia with electrochemistry
Free White Paper outlines the fundamental principles of the nitrogen reduction reaction. It then delves into the technical barriers hindering the industrialization of green ammonia production, their impact on final yield and selectivity, and potential strategies or research gaps to overcome these issues.