Application Finder
- AN-V-166Nickel in phosphatation bath
The concentration of Ni in a Zn phosphatation bath is determined by polarography in ammonia buffer pH 9.3.
- AN-V-167Cadmium in phosphatation bath
The concentration of Cd in a Zn phosphatation bath is determined by polarography in HCl electrolyte.
- AN-V-168Lead in phosphatation bath
The concentration of Pb in a Zn phosphatation bath is determined by anodic stripping voltammetry (ASV) in HCl electrolyte.
- AN-V-169Lead in tin soldering contacts
The concentration of Pb in Sn soldering contacts is determined by anodic stripping voltammetry (ASV) in an electrolyte containing citrate, oxalic acid, HCl, and cetyl trimethyl ammonium bromide.
- AN-V-170Selenium in zinc plant electrolyte
The concentration of Se(IV) in zinc plant electrolyte is determined by cathodic stripping voltammetry (CSV) in ammonium sulfate electrolyte containing EDTA and Cu. The Cu concentration has to be adapted to the sample and the deposition time. With voltammetry only free selenium is determined, therefore it has to be taken into consideration that selenium forms sparingly soluble compounds with numerous cations (e.g. Fe2(SeO3 )3 with Ks = 2·10-31).
- AN-V-171Tellurium in zinc plant electrolyte
The concentration of Te(IV) in Zn plant electrolyte is determined by cathodic stripping voltammetry (CSV) in ammonium sulfate electrolyte containing EDTA and Cu. To get a proper complexation of the interfering Zn a high amount of EDTA is necessary at pH 3.4.
- AN-V-172Cobalt in zinc plant electrolyte with a furildioxime as complexing agent
The concentration of Co in zinc plant electrolyte (neutral zinc sulfate solution) is determined by adsorptive stripping voltammetry (AdSV) in ammonia buffer with α-furildioxime as complexing agent.
- AN-V-173Lead in zinc sulfate solution
The concentration of Pb in zinc sulfate solution is determined by anodic stripping voltammetry (ASV) in hydrochloric acid electrolyte.
- AN-V-174Arsenic in zinc plant electrolyte
The concentration of As(total) in zinc plant electrolyte is determined by anodic stripping voltammetry (ASV) on a lateral gold electrode in HCl electrolyte. Due to the high excess of zinc in the sample the deposition potential has to be adapted. A second potential approx. 100 mV more negative than the arsenic signal has to be applied to selectively oxidize interfering antimony. For sample preparation the sample was passed through a cation exchange column to reduce the concentration of zinc in the measuring solution.
- AN-V-175Antimony(III) in zinc plant electrolyte with chloranilic acid as complexing agent
The concentration of of Sb(III) in zinc plant electrolyte is determined by adsorptive stripping voltammetry (AdSV) with chloranilic acid as complexing agent. In this method high copper concentrations do not interfere. An approx. 10-fold excess of lead interferes, since it shows a signal close to the antimony. With the parameters given below the working range of this method is 1 - 30 µg/L antimony(III) with respect to the concentration in the measuring vessel.
- AN-V-176Total selenium in drinking water after reduction of Se(VI) to Se(IV) with the 909 UV Digester
The Se(IV) concentration can be determined by cathodic Stripping Voltammetry (CSV) in an ammonium sulfate electrolyte. The analysis also functions in the presence of Cu. Se(IV) is determined in the first step. In order to register the entire content of Se, Se(VI) species are first reduced to Se(IV). This is handled by the 909 UV Digester at a pH value of between 7 and 9. The method requires practically no reagents and permits selenium speciation.
- AN-V-177Iron in a chromium bath (triethanolamine-bromate-method)
The concentration of Fe(total) is determined by polarography in alkaline electrolyte containing triethanolamine (TEA) and KBrO3. All reagents typically contain Fe impurities. Therefore a subtraction of the reagent blank is recommended.
- AN-V-178Copper in seawater with the Mercury Film Electrode (MFE)
The concentration of Cu in seawater is determined by anodic stripping voltammetry (ASV) in acetate buffer on a mercury film electrode (MFE). Gallium is added to overcome zinc interferences.
- AN-V-179Iron in boiler feed water
The iron concentration in boiler feed water has to be monitored to ensure reliable and safe operation of the water-steam circuit. Various guidelines set limits for the maximum iron content.The concentration of total iron in boiler feed water can be determined with high sensitivity using adsorptive stripping voltammetry (AdSV) using 2,3- dihydroxynaphthalene (DHN) as complexing agent. Voltammetry is a viable, less sophisticated alternative to atomic absorption spectroscopy (AAS) or inductive couple plasma (ICP) for the determination of iron with only a moderate investment in hardware required and low running costs.
- AN-V-180Nitrobenzene in aniline
The concentration of nitrobenzene in aniline is determined by polarography in an ethanol / acetic acid electrolyte.
- AN-V-181Chromium(VI) in cement
The concentration of Cr(VI) in cement is determined in tartrate electrolyte after acid extraction of the sample.
- AN-V-182Suppressor «Top Lucina a-M» (Okuno Chemical Industries) in acid copper bath
Determination of suppressor «Top Lucina α-M» in acid copper baths by dilution titration (DT) using cyclic voltammetric stripping (CVS).
- AN-V-183Brightener «Top Lucina a-2» (Okuno Chemical Industries) in acid Cu bath
Determination of brightener «Top Lucina α-2» in acid copper baths by modified linear approximation technique (MLAT) using cyclic voltammetric stripping (CVS).
- AN-V-184Leveler «Top Lucina a-3» (Okuno Chemical Industries) in acid Cu bath
Determination of leveler «Top Lucina α-3» in acid copper baths by response curve technique (RC) using cyclic voltammetric stripping (CVS).
- AN-V-185Cadmium and lead in electronic components as part of electrotechnical products
The EU directive on «Restriction of Hazardous Substances» (RoHS) requires the testing of four regulated heavy metals (Pb, Hg, Cd, Cr(VI)) in electrotechnical products. After sample preparation according to IEC 62321 the determination of lead and cadmium in electronic components can be carried out by anodic stripping voltammetry (ASV) using ammonium oxalate buffer pH 2.
- AN-V-186Chromium(VI) in electronic components as part of electrotechnical products
The EU directive on «Restriction of Hazardous Substances» (RoHS) requires the testing of four regulated heavy metals (Pb, Hg, Cd, Cr(VI)) in electrotechnical products. After sample preparation according to IEC 62321 the determination of chromium(VI) in electronic components can be carried out by polarography in ammonia buffer pH 9.6.
- AN-V-187Mercury in electronic components as part of electrotechnical products
The EU directive on «Restriction of Hazardous Substances» (RoHS) requires the testing of four regulated heavy metals (Pb, Hg, Cd, Cr(VI)) in electrotechnical products. After sample preparation according to IEC 62321 the determination of mercury in electronic components can be carried out by anodic stripping voltammetry (ASV) at a gold rotating disk electrode (Au-RDE).
- AN-V-188Cadmium and lead in polymer materials as part of electrotechnical products
The EU directive on «Restriction of Hazardous Substances» (RoHS) requires the testing of four regulated heavy metals (Pb, Hg, Cd, Cr(VI)) in electrotechnical products. After sample preparation according to IEC 62321 the determination of lead and cadmium in polymer materials can be carried out by anodic stripping voltammetry (ASV) using ammonium oxalate buffer pH 2.
- AN-V-189Chromium(VI) in polymer materials as part of electrotechnical products
The EU directive on «Restriction of Hazardous Substances» (RoHS) requires the testing of four regulated heavy metals (Pb, Hg, Cd, Cr(VI)) in electrotechnical products. After sample preparation according to IEC 62321 the determination of chromium(VI) in polymer materials can be carried out by polarography in ammonia buffer pH 9.6.
- AN-V-190Mercury in polymer materials as part of electrotechnical products
The EU directive on «Restriction of Hazardous Substances» (RoHS) requires the testing of four regulatedheavy metals (Pb, Hg, Cd, Cr(VI)) in electrotechnical products. After sample preparation according to IEC62321 the determination of mercury in polymer materials can be carried out by anodic stripping voltammetry (ASV)at a gold rotating disk electrode (Au-RDE).
- AN-V-191Cadmium and lead in metallic materials as part of electrotechnical products
The EU directive on «Restriction of Hazardous Substances» (RoHS) requires the testing of four regulated heavy metals (Pb, Hg, Cd, Cr(VI)) in electrotechnical products. After sample preparation according to IEC 62321 the determination of lead and cadmium in metallic materials can be carried out by anodic stripping voltammetry (ASV) using ammonium oxalate buffer pH 2.
- AN-V-192Chromium(VI) in chromate coating on metallic materials as part of electrotechnical products
The EU directive on «Restriction of Hazardous Substances» (RoHS) requires the testing of four regulated heavy metals (Pb, Hg, Cd, Cr(VI)) in electrotechnical products. After sample preparation according to IEC 62321 the determination of chromium(VI) in chromate coating on metallic materials can be carried out by adsorptive stripping voltammetry (AdSV) using DTPA (diethylenetriamine pentaacetic acid) as complexing agent.
- AN-V-193Mercury in metallic materials as part of electrotechnical products
The EU directive on «Restriction of Hazardous Substances» (RoHS) requires the testing of four regulated heavy metals (Pb, Hg, Cd, Cr(VI)) in electrotechnical products. After sample preparation according to IEC 62321 the determination of mercury in metallic materials can be carried out by anodic stripping voltammetry (ASV) at a gold rotating disk electrode (Au-RDE).
- AN-V-194Copper in ethanol and fuel ethanol (E85) for car engines
The presence of copper in fuel ethanol blends has gained considerable attention since Cu2+ catalyzes oxidative reactions in gasoline leading to olefin decomposition and gum formation. Cu2+ in ethanol can easily be determined using anodic stripping voltammetry (ASV) in ethanol/gasoline blends without any sample pretreatment.
- AN-V-195Iodate in electroless nickel baths
Electroless nickel plating is an important and well established process in the surface finishing industry. In the past, the addition of small amounts of lead has widely been used to stabilize the plating bath. With the increasing number of restrictions in recent years on the use of lead in consumber products, particularly electronics, alternative stabilizers were developed and introduced. One of the stabilizers used as lead replacement is iodate. It can be used as a single additive or in combination with bismuth or antimony. This method allows the determination of iodate directly in the plating bath sample by polarography. The method is simple and fast, however, sensitive and robust.
- AN-V-196Antimony and bismuth in electroless nickel baths
Electroless nickel plating is an important and well established process in the surface finishing industry. In the past the addition of small amounts of lead has widely been used to stabilize the plating bath. With the increasing number of restrictions in recent years on the use of lead in consumber products, particularly electronics, alternative stabilizers were developed and introduced. Two of the stabilizers used as lead replacement are antimony and bismuth. They can be used as a single additive or in combination with each other or iodate. This method allows the determination of antimony and bismuth directly in the plating bath sample by anodic stripping voltammetry (ASV). The method is simple and fast, however sensitive and robust
- AN-V-197Indirect determination of iodide in brine with stripping voltammetry
It is crucial to monitor iodide in NaCl brine to prevent membrane fouling during chlor-alkali electrolysis. Stripping voltammetry offers precise iodide analysis.
- AN-V-198Aluminum in drinking water by adsorptive stripping voltammetry using alizarin red S (DASA) as complexing agent
Aluminum can be determined in drinking water by adsorptive stripping voltammetry at the HMDE using alizarin red S (DASA) as complexing agent. The method is linear up to 35 μg/L. The detection limit for this method is β(Al) = 1 μg/L, the limit of quantification is β(Al) = 3 μg/L. The sensitivity of the method cannot be increased by deposition.
- AN-V-199Voltammetric determination of gold(I) in gold plating baths
Controlling Au(I) levels in gold plating baths is required for high quality. Voltammetric analysis with the Multi-Mode Electrode Pro is an efficient solution.
- AN-V-200Determination of thiourea in copper electrorefining solutions
Thiourea measurement during copper electrorefining can be complicated by high chloride levels. Voltammetric analysis overcomes this issue, improving copper quality.
- AN-V-201Nickel and cobalt in red wine after UV digestion
The determination of nickel and cobalt in red wine using adsorptive stripping voltammetry can be carried out after UV digestion of the sample.
- AN-V-202Determination of suppressor in acid copper baths by smartDT
The determination of suppressor with dilution titration (DT) involves numerous additions with standard solution or sample to reach the evaluation ratio. Usually fixed, equidistant addition volumes are used. With smartDT, variable addition volumes are used that are automatically calculated by the software. At the beginning, the volumes are bigger. Towards the evaluation ratio, the addition volume becomes smaller to guarantee a good accuracy of the result. The operator defines the first and the smallest addition volume to be used. All volumes in between are calculated by the software considering the progress of the determination. Using smartDT with intelligent addition volumes, the determination of suppressor can be significantly accelerated with the same or even better accuracy than with the classic DT. The time saving per determination is between 20 and 40%.
- AN-V-203Determination of copper in electrolyte solutions for production of CIGS solar cells
This Application Note describes the polarograhic determination of copper in electroplating baths used in the production of thin-film copper indium gallium diselenide solar cells (CIGS cells). The CIGS absorber layer is electrodeposited on a molybdenum-coated substrate.Copper analysis is carried out after dilution of the sample with sulfuric acid as supporting electrolyte.
- AN-V-204Determination of indium in electrolyte solutions for production of CIGS solar cells
This Application Note describes the polarographic determination of indium in electroplating baths used in the production of copper indium gallium diselenide thin-film solar cells (CIGS cells). The CIGS absorber layer is electrodeposited on the molybdenum-coated substrate. Indium analysis is carried out after dilution of the bath sample with sulfuric acid as supporting electrolyte.
- AN-V-205Determination of gallium in electrolyte solutions for production of CIGS solar cells
This Application Note describes the determination of gallium in electroplating baths used in the production of copper indium gallium diselenide thin-film solar cells (CIGS cells). The CIGS absorber layer is electrodeposited on a molybdenum-coated substrate. Gallium analysis using anodic stripping voltammetry (ASV) is carried out after dilution of the sample with sulfuric acid as supporting electrolyte.
- AN-V-206Determination of selenite in electrolyte solutions for production of CIGS solar cells
This Application Note describes the polarographic determination of selenite in electroplating baths used in the production of copper indium gallium diselenide thin-film solar cells (CIGS cells). The CIGS absorber layer is electrodeposited on a molybdenum-coated substrate. Selenite analysis is carried out after dilution of the sample with sulfuric acid as supporting electrolyte.
- AN-V-207Determination of cadmium in electrolyte solutions for production of CIS and CIGS solar cells
This Application Note describes the polarographic determination of cadmium in electroplating baths used in the production of copper indium gallium diselenide (CIGS) or copper indium diselenide thin-film solar cells (CIS). Cadmium sulfide (CdS) from the electrolyte solution is deposited as a thin film on the CIS or CIGS absorber layer via chemical bath deposition (CBD).
- AN-V-208Determination of thiourea in electrolytes for production of CIS and CIGS solar cells
This Application Note describes the polarographic determination of thiourea in electroplating baths used in the production of copper indium gallium diselenide (CIGS) or copper indium diselenide thin-film solar cells (CIS). Cadmium sulfide (CdS) from the electrolyte solution is deposited as a thin film on the CIS or CIGS absorber layer via chemical bath deposition (CBD).
- AN-V-209Carbonyl test methods for alcohols
This polarographic method uses the Multi-Mode Electrode Pro for simultaneous detection of carbonyl impurities in alcohols, ensuring high product quality and stability.
- AN-V-210Total arsenic in mineral water
Arsenic is ubiquitous in the earth’s crust in low concentrations. Elevated levels can be found in mineral deposits and ores. Arsenic from such deposits leaches into the groundwater in the form of arsenite (AsO33–) and arsenate (AsO43–), causing its contamination. In addition to the arsenic originating from natural sources, industry and agriculture contribute to the contamination to a lower extent. The guideline value for inorganic total arsenic in the World Health Organization’s «Guidelines for Drinking-water Quality» is set to 10 μg/L. With a limit of detection (LOD) of 0.9 μg/L, anodic stripping voltammetry is a viable, less sophisticated alternative to atomic absorption spectroscopy (AAS) for the determination of arsenic. While AAS (and competing methods) can only be performed in a laboratory, anodic stripping voltammetry can be used conventionally in the laboratory or alternatively in the field using the 946 Portable VA Analyzer. The determination is carried out on the scTRACE Gold electrode.
- AN-V-211Arsenic(III) in mineral water
Arsenic is ubiquitous in the earth’s crust in low concentrations. Elevated levels can be found in mineral deposits and ores. Arsenic from such deposits leaches into the groundwater in the form of arsenite (AsO33–) and arsenate (AsO43–), causing its contamination. As(III) is more toxic than As(V) and shows higher mobility in the environment. The selective determination of this species is possible using the method described in this document.With a limit of detection (LOD) of 0.3 μg/L, anodic stripping voltammetry allows speciation, i.e. the specific determination of As(III). While atomic absorption spectroscopy (AAS) (and competing methods) can only determine the total element concentration, anodic stripping voltammetry is selective to the As(III) oxidation state. The determination is carried out on the scTRACE Gold electrode.
- AN-V-212Mercury in mineral water
Mercury and its compounds are toxic. The highest risk is posed by chronic poisoning with mercury compounds ingested with food. A significant part of the mercury present in the environment is of anthropogenic origin. Considerable sources are coal-fired power plants, steel, and nonferrous metal production, waste incineration plants, the chemical industry, or artisanal gold mining where the use of elemental mercury for the extraction of gold from the ore is still common. The guideline value for inorganic mercury in the World Health Organization’s «Guidelines for Drinking-water Quality» is set to 6 μg/L.With a limit of detection (LOD) of 0.5 μg/L, anodic stripping voltammetry is a viable, less sophisticated alternative to atomic absorption spectroscopy (AAS).While AAS (and competing methods) can only be performed in a laboratory, anodic stripping voltammetry can be used conventionally in the laboratory or alternatively in the field with the 946 Portable VA Analyzer. The determination is carried out on the scTRACE Gold electrode.
- AN-V-213Copper in drinking water
Higher levels of copper in drinking water are usually caused by corrosive action of water leaching copper from copper pipes. While copper is an essential nutrient for the human organism, ingestion of higher concentrations have an adverse effect on human health. The current World Health Organization’s «Guidelines for Drinking-water Quality» recommend a maximum concentration of 2000 μg/L. With a limit of detection (LOD) of 0.5 μg/L, anodic stripping voltammetry is a viable, less sophisticated alternative to atomic absorption spectroscopy (AAS) for the determination of copper in drinking water. While AAS (and competing methods) can only be performed in a laboratory, anodic stripping voltammetry can be used conventionally in the laboratory or alternatively in the field with the 946 Portable VA Analyzer. The determination is carried out on the scTRACE Gold electrode.
- AN-V-214Lead in drinking water
Lead is known to be highly toxic to humans as it interferes with enzyme reactions. Chronic lead poisoning can be caused by lead leaching into drinking water from piping systems. The current provisional guideline value in the World Health Organization’s «Guidelines for Drinking-water Quality» sets a maximum concentration of 10 μg/L. With a limit of detection (LOD) of 0.2 μg/L, anodic stripping voltammetry is a viable, less sophisticated alternative to atomic absorption spectroscopy (AAS) to determine lead in drinking water. While AAS (and competing methods) can only be performed in a laboratory, anodic stripping voltammetry can be used conventionally in the laboratory or alternatively in the field with the 946 Portable VA Analyzer. The determination is carried out on a silver film applied to the scTRACE Gold electrode.
- AN-V-215Zinc in drinking water with the scTRACE Gold
Zinc is an essential trace element for humans. Excessive intake of zinc in higher concentrations can be harmful, however. There is no guideline value for zinc in the World Health Organization’s «Guidelines for Drinking-water Quality» because typical levels usually found in drinking water are of no concern. Anodic stripping voltammetry is a viable, less sophisticated alternative to atomic absorption spectroscopy (AAS) for the determination of zinc in drinking water. While AAS (and competing methods) can only be performed in a laboratory, anodic stripping voltammetric determinations can be used conventionally in the laboratory or alternatively in the field using with 946 Portable VA Analyzer. The determination is carried out on the scTRACE Gold electrode.
Did you know?
The OMNIS Model Developer creates prediction models from your data set with a single click.
Show another