Du har omdirigerats till din lokala version av den begärda sidan

Frequently Asked Questions (FAQ) about Raman spectroscopy: Theory and usage

19 sep. 2022

Artikel

Denna artikel är Dela 1 i en serie

Gå till

Dela 2

Raman spectroscopy is a non-destructive analytical technique based on the inelastic scattering of photons related to the different vibrational modes of molecules. This discovery by C. V. Raman in 1928 resulted in a simple yet effective method to determine the structure of simple molecules that continues to grow in popularity among the scientific community.

As the spectrometer’s laser interacts with a sample, the energy of the light scattered back is shifted resulting in a Raman spectrum that gives valuable information about the chemical structure. This article covers some of the most frequently asked questions about Raman spectroscopy regarding the theory behind it and how it can be used in practice.

1. What is Raman spectroscopy?

Raman is a form of molecular spectroscopy that is observed as inelastically scattered light when a sample is excited by a laser. While most scattering occurs elastically, about 1 in 106 scattering processes interact with the molecule through bond stretching and bending vibrations resulting in Raman-scattered light. Shifted by these molecular interactions, the detected Raman photons can be processed into a spectrum that relates to the unique bonds within a molecule, providing the user with an invaluable analytical tool for molecular fingerprinting. This «fingerprint» is used primarily for material identification and, increasingly, for quantification.