Методики
- 410000003-APortable Raman Spectroscopy for the Study of Polymorphs and Monitoring Polymorphic Transitions
Raman spectroscopy is used for material characterization by analyzing molecular or crystal symmetrical vibrations and rotations that are excited by a laser, and exhibit vibrations specific to the molecular bonds and crystal arrangements in the molecules. Raman technology is a valuable tool in distinguishing different polymorphs. Examples of portable Raman spectroscopy for identification of polymorphs and in monitoring the polymorphic transiton of citric acid and its hydrated form are presented.
- 410000006-BLow-frequency Raman spectroscopy
Raman spectroscopy is an advantageous analytical tool that allows for the measurement of molecular structure and identifying chemical composition of materials based on the rotational and vibrational modes of a molecule. With advanced technology and an optimized optical design, the B&W Tek BAC102 series E-grade probe can access lower frequency modes down to 65 cm-1, providing key information for applications in protein characterization, polymorph detection, and identification, along with material phase and structure determination.
- 410000008-ARaw Materials Identification through Multiple Polyethylene Bags
The NanoRam is able to test material through multiple layers of transparent plastic bags. Postive identification of material on PE bags from 1 to 9 layers were obtained, demonstrating minimum interference from the PE bags on the material identification result.
- 410000012-A01Rapid Detection of the Low Dose API in Xanax Using Surface-Enhanced Raman Spectroscopy for Anti-Counterfeiting Purposes
The emergence of counterfeit prescription drugs has become a concern for the pharmaceutical industry. Because of the low concentrations of APIs found in pharmaceutical drugs, normal Raman spectroscopy is typically not sensitive enough to detect the API from the surface of a pill. In this study we develop a surface-enhanced Raman spectroscopy (SERS)-based approach to identify a low-dose of the API alprazolam in a Xanax tablet using a handheld Raman spectrometer. If no SERS peaks consistent with alprazolam are observed from a Xanax tablet, the pill is a suspected fake. The method demonstrates the power of SERS to quickly verify the presence of alprazolam in the tablet for anti-counterfeiting purposes.
- 410000014-BRaman Spectroscopy as a Tool for Process Analytical Technology
This article demonstrates the utility of portable Raman spectroscopy as a versatile tool for process analytical technology (PAT) for raw material identification, in-situ monitoring of reactions in developing active pharmaceutical ingredients (APIs), and for real-time process monitoring. Raw material identification is done for verification of starting materials as required by PIC/S and cGMP, and can be readily done with handheld Raman. Portable Raman systems allow users to make measurements to bring process understanding and also provide proof of concept for the Raman measurements to be implemented in pilot plants or large-scale production sites. For known reactions which are repetitively performed or for continuous online process monitoring of reactions, Raman provides a convenient solution for process understanding and the basis for process control.
- 410000017-ARaman for See Through Material Identification Application Note
A new Raman system design is presented that expands the applicability of Raman to See Through diffusely scattering media such as opaque packaging materials, as well as to measure the Raman spectrum and identify thermolabile, photolabile, or heterogeneous samples.
- 410000026-AFast Ingredient Analysis of Edible Oils Using a Portable Raman Spectrometer
Edible oils are not only a major source of nutrition but also a key basic material in the food industry. Vegetable oils are increasingly important because of their high content in mono- and polyunsaturated fatty acids in comparison with animal fats. In this application note, the main ingredients of olive oil, camellia oil, arachis oil, sunflower seed oil, and colza oil are analyzed using a portable Raman spectrometer combined with chemometrics software.
- 410000028-AIdentification of Additives used in the Pharmaceutical and Food Industries with the NanoRam Handheld Raman Spectrometer
Today’s Raman instrumentation is faster, more rugged, and less expensive than previous instrumentation.The design of high performance, portable and handheld devices has introduced the technology to new application areas that were previously not possible with older, more cumbersome instruments. Handheld Raman instruments such as the NanoRam® from B&W Tek are well-suited for pharmaceutical applications such as the testing of raw materials, verification of final products and the identification of counterfeit drugs due to the technique’s extremely high molecular selectivity.
- 410000029-ASee Through Raman Technology: Expanded capabilities for through package identification using 785 nm and 1064 nm excitation Raman
See through Raman Spectroscopy (STRaman®) is a newly developed technology that expands the capability of Raman spectroscopy to measure samples beneath diffusely scattering packaging material. The STRaman technology features a much larger sampling area than the confocal approach. This design enhances the relative intensity of the signal from the deeper layers, thereby increasing the effective sampling depth, allowing the measurement of material inside visually opaque containers. The larger sampling area has the additional advantage of preventing sample damage by reducing the power density, as well as improving measurement accuracy by eliminating heterogeneous effect.
- 410000030-APortable Transmission Raman Spectroscopy for At-Line Content Uniformity Testing of Pharmaceutical Tablets
Analytical methods to perform CU testing should ideally be fast, noninvasive and achieved with limited sample preparation. Recently, transmission near-infrared (NIR) spectroscopy and transmission Raman spectroscopy have both been explored as alternative methods for rapid and non-destructive on- and at-line CU testing with no sample preparation. Although quick and nondestructive, transmission NIR spectroscopy suffers from poor chemical selectivity and is sensitive to changes in the testing environment. Transmission Raman spectroscopy combined with chemometric modeling is quickly emerging as a valued technique for CU testing due to its high chemical specificity, which is particularly useful when dealing with complex pharmaceutical formulations that contain multiple components.