Applications
- 8.000.6020Titrimetric analyses of biofuels
Several testing methods such as the determination of the acid and the iodine numbers in biodiesel as well as the quantification of sulfate and chloride in bioethanol are described.
- 8.000.6021Water analysis
A complete tap water analysis includes the determination of the pH value, the alkalinity and the total water hardness. Both the pH measurement and the pH titration by means of a standard pH electrode suffer from several drawbacks. First, the response time of several minutes is too long and, above all, the stirring rate significantly influences the measured pH value. Unlike these standard pH electrodes, the Aquatrode Plus with its special glass membrane guarantees rapid, correct and very precise pH measurements and pH titrations in solutions that have a low ionic strength or are weakly buffered. Total water hardness is ideally determined by a calcium ion-selective electrode (Ca ISE). In a complexometric titration, calcium and magnesium can be simultaneously determined up to a calcium/magnesium ratio of 10:1. Detection limits for both ions are in the range of 0.01 mmol/L.
- 8.000.6022Automated preparation of surrogate mixtures for the determination of octane and cetane numbers
Commercially available fuels are complex mixtures of hundreds of different hydrocarbons. For the calibration of the test engines or advanced experimental and computational research they are modeled by means of multicomponent surrogate mixtures that adequately represent the desired physical and chemical characteristics. By definition, every octane and cetane number corresponds to a specific mixing ratio of primary reference fuels (PRFs). Based on this information, the tiamoTM controlled automatic dosing device prepares the surrogate mixtures. The setup drastically minimizes time-consuming and error-prone manual preparation steps and the contact with hazardous solvents. Additionally, precise and accurate results are displayed on customizable reports that fully comply with all current GLP and GMP requirements.
- 8.000.6023Determination of anionic and cationic surfactants by potentiometric two-phase titration
Compared to the classical Epton titration, potentiometrically indicated two-phase titrations using organic-solvent-resistant Surfactrodes can be easily automated and require no toxic and environmentally hazardous chloroform. Even challenging matrices such as fats and oils in bath oils and hair conditioners or strong oxidizing agents in washing powder and industrial cleaners do not interfere with the titration of the ionic surfactants. Results obtained show excellent agreement to those of the Epton titration. Irrespective of the matrix, relative standard deviations of threefold determinations are all below 2.1%. While the Surfactrode Resistant is mainly used for oil-containing formulations, the Surfactrode Refill is ideal for washing powders and soaps. Both electrodes excel by their ruggedness and allow the rapid and precise determination of anionic and cationic surfactants.
- 8.000.6024Fully automated sample preparation for the content determination of tablets
Benzbromaron is one of the main uricosuric drugs currently used. In addition to sophisticated and expensive LC-MS and GC-MS methods, benzbromaron can be effectively determined by titration with sodium hydroxide solution using a straightforward, fully automated sample preparation method. A high-frequency homogenizer comminutes one or three tablets within 90 or 120 s respectively. The overall analysis time is 8 minutes. Ten-fold determinations with one and three tablets resulted in a benzbromaron content of 99.2 and 98.7 mg per tablet respectively. Increasing the number of tablets from one to three lowers the RSD from 1.36 to 0.88%. These results show an excellent agreement with the benzbromaron content indicated by the manufacturer (approx. 100 mg/tablet).Besides the presented Titrando/homogenizer combination, the other two members of the 815 Robotic Soliprep Sample Processor family offer comprehensive sample preparation possibilities within the fields of IC, HPLC, ICP or voltammetry.
- 8.000.6034Determination of the sodium contribution of solvent-extractable organic compounds in Bayer process liquor
This poster presents a highly reproducible procedure for the determination of the sodium contribution of acid-extractable organic species in Bayer process liquor. The precision of the method is estimated to be 0.2% RSD.
- 8.000.6047Fully automated potentiometric determination of the hydroxyl number (HN) according to ASTM E1899-08 and DIN 53240-2
Hydroxyl is an important functional group and knowledge of its content is required in many intermediate and end-use products such as polyols, resins, lacquer raw materials and fats (petroleum industry). The test method to be described determines primary and secondary hydroxyl groups. The hydroxyl number is defined as the mg of KOH equivalent to the hydroxyl content of 1 g of sample.The most frequently described method for determining the hydroxyl number is the conversion with acetic anhydride in pyridine with subsequent titration of the acetic acid released: H3C-CO-O-CO-CH3 + R-OH -> R-O-CO-CH3 + CH3COOH. However, this method suffers from the following drawbacks: - The sample must be boiled under reflux for 1 h (long reaction time and laborious, expensive sample handling) - The method cannot be automated - Small hydroxyl numbers cannot be determined exactly - Pyridine has to be used, which is both toxic and foul-smellingBoth standards, ASTM E1899-08 and DIN 53240-2, offer alternative methods that do not require manual sample preparation and therefore can be fully automated: The method suggested in ASTM E1899-08 is based on the reaction of the hydroxyl groups attached to primary and secondary carbon atoms with excess toluene-4-sulfonyl-isocyanate (TSI) to form an acidic carbamate. The latter can then be titrated in a non-aqueous medium with the strong base tetrabutyl- ammonium hydroxide (TBAOH). The method suggested in DIN 53240-2 is based on the catalyzed acetylation of the hydroxyl group. After hydrolysis of the intermediate, the remaining acetic acid is titrated in a non-aqueous medium with alcoholic KOH solution. The present work demonstrates and discusses an easy way to determine the hydroxyl number according to ASTM E1899-08 or DIN 53240-2 with a fully automated titrimetric system for a great variety of industrial oil samples.
- 8.000.6048Fully automated determination of fluoride in blood samples
Sodium fluoride is used as a preservative in biological samples for alcohol analysis. All submitted blood samples, including those taken from vehicle drivers suspected of driving under the influence of liquor, have to be tested for adequate preservation prior to alcohol determination by gas chromatography. This is critical to ensure adequate sample preservation. Inadequate sample preservation may allow glycolysis and/or microorganism growth to produce ethanol.In the past this has been done by direct potentiometric measurement using a fluoride-selective electrode (F ISE), an ion meter and certified NaF standards. The sodium fluoride level was determined manually by dipping the electrode directly into the blood sample. Results were recorded manually. This poster describes two independent automated methods of analysis that allow the minimization of this tedious and time-consuming procedure.In the first one, the fluoride content in a blood aliquot is measured by direct potentiometric measurement after the addition of TISAB and deionized water. The second method employs the titration of the sample aliquot with La(NO3)3 after adding a buffer solution.
- 8.000.6066Determination of the total acid number (TAN) using thermometric titration
The thermometric titration method presented here permits a simple and direct determination of the total acid number (TAN) in petroleum products. It is an invaluable alternative to current manual and potentiometric methods. Thermometric titration uses a maintenance-free temperature sensor that does not require rehydration and is free of fouling and matrix effects. The procedure requires minimal sample preparation. Results agree closely with those from the potentiometric titrimetric procedure according to ASTM D664, but the thermometric titration method is far superior in terms of reproducibility and speed of analysis, with determinations being complete in approximately one minute.
- 8.000.6067Fully automatic determination of sodium in food samples
The analysis described in this poster dicusses thermometric titration as a promising method for the straightforward sodium determination in foodstuffs. Thermometric sodium titration was tested for its applicability to various food matrices such as soups, gravy and several salty snacks. Enthalpy change can be monitored as a change in temperature of the solution using a sensitive digital thermometer. The sodium determination described here relies on the exothermic precipitation of elpasolite (NaK2AlF6). The titrant is a standard aluminum solution which contains an excess of potassium ions. The titration is performed directly on a suspension of the food sample and is completed in under two minutes. The method is robust, can be fully automated and due to the highly reproducible high-frequency homogenization, copes with a variety of challenging food matrices (ketchup, instant soups, pretzels, etc.). In addition to this application note, you can find more information on thermometric sodium determination in foods in our application video available on YouTube: https://youtu.be/lnCp9jBxoEs
- 8.000.6080Thermometric titration – the missing piece of the titration puzzle
Thermometric titration can solve application problems that potentiometry cannot solve at all, or at least not satisfactorily.
- 8.000.6104USP Monograph Modernization Initiative: Chemical Medicines Assay by Potentiometric Titration
This poster presented jointly with USP at AAPS meeting shows the new potentiometric titration assay method for potassium bicarbonate and potassium carbonate assay which offers selectivity and fulfills all USP method validation requirements as per USP General Chapter < 1225>. Potentiometric titration based assay determination is faster and easy to use compared to the chromatographic techniques and can be easily automated to fulfill high throughput needs. Autotitration combined with appropriate equivalence point detection methods not only eliminates manual errors, but fulfills data integrity and 21 CFR 11 requirements, which makes the pharmaceutical QA/QC workflow easier.
- 8.000.6111Fully Automated Determination of pH Using Flow Cell Technology
A high throughput automated system was developed to determine pH of culture media using a pH module equipped with an external flow cell. A custom septum-piercing, vented needle was developed to accommodate the shape and size of the customer sample vials. For this application, both accurate and precise pH measurements were required. The data presented in this document was collected by a customer as a part of their validation process and was provided for use with their consent.
- AB-004Biamperometric titration method for the determination of antimony in lead
An automatic titration method is described using biamperometric endpoint indication for the determination of antimony in antimony-alloyed cable lead (approx. 1% Sb). A 0.01 mol/L KBrO3 solution is used as the titrant.
- AB-011Determination of zinc by bi-amperometric titration with potassium hexacyanoferrate(II)
Zinc, such as that occurring as a constituent of light alloys, can be determined by precipitation titration with potentiometric endpoint indication. The determination of zinc in the presence of cadmium is also possible.2 K4[Fe(CN)6] + 3 ZnCl2 → K2Zn3[Fe(CN)6]2 + 6 KCl
- AB-014Determination of nickel by potentiometric titration
A potentiometric method for the determination of nickel in gold and silver electroplating baths is described. The titration is carried out with KCN. Gold and silver are removed before titration by a reduction process. It is also possible to determine nickel in steel alloys, etc. (see the literature reference).Ni2+ + 4 KCN + 2NH4+ → (NH4)2[Ni(CN)4] + 4 K+
- AB-016Routine determination of copper in brass, bronze, German silver and in electroplating baths
A routine method for the determination of copper is described. After dissolving the sample and adding a KI/KCNS solution, the released iodine is back-titrated with thiosulfate. The endpoint indication is potentiometric.
- AB-017Potentiometric titration of calcium carbonate in raw meal from the cement industry
A method for the potentiometric determination of CaCO3 in cement raw meal is described, in which the accurately weighed-out sample is treated with HCl, heated to boiling and the excess HCl is then back-titrated with NaOH.
- AB-018Simultaneous determination of gold and copper in electroplating baths and/or alloys by potentiometric titration
This Bulletin describes the simultaneous determination of gold and copper by potentiometric titration using an Fe(II) solution as titrant. Fe(II) reduces Au(III) directly to the free metal, whereas Cu(II) does not react. By the addition of fluoride ions the Fe(III) is complexed and a shift of the redox potential is effected. Afterwards, potassium iodide is added, thus reducing the Cu(II) to Cu(I), and the free iodine is again titrated with the Fe(II) solution using a Pt Titrode.Chemical reactions:Au(III) + 3 Fe(II) → Au + 3 Fe(III)2 Cu(II) + 2 I- → 2 Cu(I) + I2I2 + 2 Fe(II) → 2 I- + 2 Fe(III)
- AB-025Coatings on silver electrodes
Ag electrodes are used for the indication of the potentiometric endpoints in precipitation titrations between silver and halide or sulfide ions. A coating on the silver ring may increase the sensitivity of the electrode and can thus reduce the limit of detection. This is why a variety of coated Ag electrodes are commercially available. This bulletin describes how the silver ring of Ag electrodes can be coated with AgCl, AgBr, AgI or Ag2S by electrolysis.
- AB-027Potentiometric titration of chloride and bromide in the presence of each other
If chloride and bromide are present in approximately equal molar concentrations they can be titrated directly with silver nitrate solution after addition of barium acetate. If, however, the molar ratio n(Br-) : n(Cl-) changes from 1 : 1 to 1 : 5, 1 : 10, 5 : 1 or 10 : 1 then greater relative errors must be expected with this method. The Bulletin describes an additional titration method that allows bromide to be determined in the presence of a large excess of chloride. The determination of small chloride concentrations in the presence of a large excess of bromide is not possible by titration.
- AB-037Determination of chromium in iron and steel
Two methods are described for the determination of chromium: a biamperometric titration and a polarographic analysis.
- AB-039Potentiometric determination of nitrating acid
A potentiometric, nonaqueous method is described for analyzing nitrating acid using cyclohexylamine as titrant. Both sulfuric and nitric acid can be determined quantitatively.
- AB-042Determination of carbonyl compounds by potentiometric titration
Carbonyl compounds (CC) occur in many products, such as bio-oils and fuels, cyclic and acyclic solvents, flavors and mineral oils. Carbonyl compounds can be responsible for the instability of these products during storage or processing. Especially pyrolysis bio-oils are known to cause issues during storage, handling and upgrading. This bulletin describes an aqueous and a non-aqueous analytical titration method for the determination of carbonyl compounds by potentiometric titration.
- AB-046Potentiometric determination of cyanide
The determination of cyanide is very important not only in electroplating baths and when decontaminating wastewater but, due to its high toxicity, also in water samples in general. Concentrations of 0.05 mg/L CN- can already be lethal for fish.This Bulletin describes the determination of cyanide in samples of different concentrations by potentiometric titration.Chemical reactions:2 CN- + Ag+ → [Ag(CN)2]-[Ag(CN)2]- + Ag+ → 2 AgCN
- AB-048Check of Silver, Platinum and Gold electrodes
It is essential to know before starting the sample analysis if the electrode is in a good state or not. A well workingelectrode will increase the quality of your results, as the accuracy and precision will be increased. Furthermore, tedious error tracking can be omitted and no sample is wasted due to a defect or old electrode. There exist several ways how to check metal electrodes, e.g., measurement of redox potentials, potentiometric titration or bivoltammetric titration. This bulletin describes the best methods for the various by Metrohm available metal electrodes.
- AB-053Determination of ammonium or Kjeldahl nitrogen
The potentiometric titration of Kjeldahl nitrogen is one of the most common analytic procedures. It is referenced in numerous standards, ranging from the food and animal feed industries through sewage and waste analysis and all the way to the fertilizer industry. As a rule, the samples are digested with concentrated sulfuric acid with the addition of a catalyst. The ammonium sulfate that is formed is distilled as ammonia in alkali solution, collected in an absorption solution and titrated there.This Bulletin provides a detailed description of potentiometric nitrogen determination following distillation of the digestion solution, followed by a discussion of the possibilities of coulometric titration (without distillation).
- AB-061Potentiometric determination of silver – Accurate determination according to EN ISO and GB/T standards
Silver is an important metal not only in jewelry and silverware but also in electrical conductors and contacts. The knowledge of the exact silver content in fine silver and silver alloys ensures that quality standards for jewelry and silverware are met. As for the plating industry, the knowledge of the amount of silver in silver plating baths helps to run the bath efficiently.While X-ray fluorescence (XRF) is a fast alternative to determine the silver content in fine silver and silver alloys, it can only determine the silver content of the outermost sections of the metal. In contrast, titration offers a more comprehensive solution considering the whole sample, thus preventing fraud by thick plating.This application bulletin describes the potentiometric determination of silver in fine silver and silver alloys accordingto EN ISO 11427, ISO 13756, GB/T 17823, and GB/T 18996 as well as in silver plating baths by a titration with potassium bromide or potassium chloride, respectively
- AB-063Silicon, calcium, magnesium, iron and aluminum in cement after digestion and photometric titration
As much as the many types of cement may differ from one another, the characteristic that all of them have in common is the presence of the elements calcium, magnesium, iron, aluminum and silicon.Calcium, magnesium, iron and aluminum can be determined using various indicators following digestion of the cement sample using photometric titration with the Optrode at 610 nm. The determination of silicon, on the other hand, is gravimetric.
- AB-066Potentiometric and thermometric determination of boric acid
Boric acid is used in many primary circuits of nuclear power plants, in nickel plating baths, and in the production of optical glasses. Furthermore, boron compounds are found in washing powders and fertilizers. This bulletin describes the potentiometric and thermometric determination of boric acid. The determination also covers further boron compounds, when acidic digestion is applied.
- AB-068Potentiometric determination of carboxyl and amino terminal groups in polyamide fibers
Indication of the titration endpoint of the weakly alkaline or weakly acidic terminal groups in non-aqueous solution is frequently not easy. An improvement is possible by using a suitable titrant (TBAH = tetrabutylammonium hydroxide for terminal carboxyl groups; perchloric acid for terminal amino groups).An improvement in the evaluation can also be achieved by choosing benzyl alcohol as the solvent.The choice of electrode combination and the measuring setup is also important. Differential potentiometry using the three-electrode technique results in a great improvement in titrations in poorly conducting solutions. Noisy signals are eliminated.
- AB-069Titrimetric methods for the chemical analysis of pasta
The quality of egg-based pasta is primarily determined by its egg content. Also of importance, however, is the water content, which influences the storage life of the product, as well as the degree of acidity which, in the case of high values, indicates undesirable acidification during processing or drying. A check of the chloride content shows whether salt has been added to the pasta.
- AB-072Potentiometric determination of mercury or silver in the presence of halides
Halides interfere with most determinations of mercury or silver. However, if mercury or silver is titrated with sulfide ions, extremely insoluble sulfides are formed.A simple method is described that allows the direct titration of mercury(II) or silver(I) compounds in the presence of halides. The potentiometric titration takes place under alkaline conditions using thioacetamide as the titrant after formation of the EDTA complex.Organic compounds that are insoluble in alkaline EDTA can also be titrated after a Schoeniger digestion.
- AB-084Titrimetric analysis of vinegar
The quality of a vinegar depends on various factors. Since the contents of the individual components vary widely even from bottle to bottle, it is impossible to give average values. This Bulletin describes the determination of the following parameters in vinegar: pH value, total titratable acid, volatile, and non-volatile acid, free mineral acid as well as free and total sulfurous acid.
- AB-085Analysis of jams, fruit and vegetable juices, and their concentrates
This Bulletin describes analysis methods for determining the following parameters: pH value, total titratable acid, ash alkalinity, formol number, total sulfurous acid, chloride, sulfate, calcium, and magnesium. These methods are suitable for the analysis of jams, fruit and vegetable juices, and their concentrates.
- AB-087Analysis of dairy products
This Bulletin describes potentiometric titration methods for the determination of the acidity in milk and yoghurt according to DIN 10316, ISO/TS 11869, IDF/RM 150, ISO 6091 and IDF 86, the chloride content in milk, butter and cheese according to EN ISO 5943, IDF 88, ISO 15648, IDF 179, ISO 21422, and IDF 242. Additionally the determination of the sodium content in milk using the thermometric titration is described. The determination of the oxidation stability of butter in accordance to AOCS Cd 12b-92, ISO 6886 and GB/T 21121 as well as the determination of lactose in lactose free milk by ion chromatography is also described.For the determination of the pH value in dairy products see Application Bulletin AB-086 and for the determination of calcium and magnesium see Application Bulletin AB-235.
- AB-089Potentiometric analysis of anodizing baths
This Bulletin describes potentiometric titration methods for checking sulfuric acid and chromic acid anodizing baths. In addition to the main components aluminum, sulfuric acid, and chromic acid, chloride, oxalic acid, and sulfate are determined.
- AB-090Potentiometric analysis of tin plating baths
Potentiometric titration methods for the analysis of acid and alkaline tin plating baths are presented. The following methods are described: tin(II) / tin(IV) / total tin, free fluoroboric acid, or free sulfuric acid, chloride in acidic tin baths, free hydroxide, and carbonate in alkaline tin baths.
- AB-091Potentiometric analysis of brass and bronze plating baths
Methods are described for the potentiometric analysis of the following bath components:Brass plating bath: copper, zinc, free cyanide, ammonium, carbonate, and sulfite.Bronze plating bath: copper, tin, and free cyanide.
- AB-092Potentiometric analysis of lead plating baths
This Bulletin describes the potentiometric determination of lead, tin(II), and free fluoroboric acid.
- AB-093Potentiometric analysis of cadmium plating baths
This Bulletin describes titrimetric methods for the determination of cadmium, free sodium hydroxide, sodium carbonate, and total cyanide. The free cyanide can be calculated from the total cyanide and the Cd content.
- AB-098Determination of ascorbic acid (Vitamin C) and its compounds
In addition to its natural occurrence in fruit and vegetables, ascorbic acid (Vitamin C) is used as an antioxidant in foods and drinks. Ascorbic acid is furthermore also to be found in numerous drugs.Ascorbic acid and its salts and esters can be determined with titration or by using polarography, for which ascorbic acid is oxidized to form dehydroascorbic acid.Bi-voltammetric or photometric equivalence point indication can be used for titrimetric determination. It must be taken into account here that only bi-voltammetric indication is independent of the inherent color of the sample. Polarography is the most selective of the methods described, as other reducing or oxidizing substances are not recorded.
- AB-100Biamperometric determination of potassium and/or ammonium
The potassium (or ammonium) ion is precipitated with sodium tetraphenyl borate, and the excess of this reagent back-titrated against the thallous(I) ion, using biamperometric endpoint detection. Ammonium can either be titrated together in an acid solution, or driven off by previous boiling in an alkaline solution. Methods are given for determining potassium in the presence of large excesses of sodium, ammonium, calcium, and magnesium.
- AB-101Complexometric titrations with the Cu ISE
This Bulletin describes the complexometric potentiometric titration of metal ions. An ion-selective copper electrode is used to indicate the endpoint of the titration. Since this electrode does not respond directly to complexing agents, the corresponding Cu complex is added to the solution. With the described electrode, it is possible to determine water hardness and to analyze metal concentrations in electroplating baths, metal salts, minerals, and ores. The following metal ions have been determined: Al3+, Ba2+, Bi3+, Ca2+, Co2+, Fe3+, Mg2+, Ni2+, Pb2+, Sr2+, and Zn2+.
- AB-112Quantitative determination of metals that can be precipitated by potassium hexacyanoferrate(II) in wine («décassage» of wine)
Wine sometimes contains heavy metals which can be precipitated out by the addition of potassium ferrocyanide. Generally, these are quantities of iron ranging between 1 and 5 mg, and exceptionally up to 9 mg Fe/L. Zinc, copper, and lead – in descending order of content – may also be present. To estimate the quantity of potassium ferrocyanide necessary for the «décassage of the wine», only very complicated and relatively inaccurate methods have been described until now.This Bulletin permits accurate results to be obtained easily with a simple instrumentation. The results are available in a short time.
- AB-119Potentiometric determination of trace bromide and iodide in chlorides
Bromide is removed from the sample as BrCN by distillation. The BrCN is absorbed in sodium hydroxide solution and decomposed with concentrated sulfuric acid, then the released bromide ions are determined by potentiometric titration with silver nitrate solution. Iodide does not interfere with the determination.Iodide is oxidized to iodate by hypobromite. After destruction of the excess hypobromite, the potentiometric titration (of the iodine released from iodate) is carried out with sodium thiosulfate solution. Bromide does not interfere, even in great excess.The described methods allow the determination of bromide and iodide in the presence of a large excess of chloride (e.g., in brine, seawater, sodium chloride, etc.).
- AB-125Simultaneous determination of calcium, magnesium, and alkalinity by complexometric titration with potentiometric or photometric indication in water and beverage samples
This bulletin describes the determination of calcium, magnesium, and alkalinity in water by complexometric titration with EDTA as titrant. It is grouped into two parts, the potentiometric determination and the photometric determination.There are multiple definitions of the different types of water hardness. In this Application Bulletin, the following definitions are used: alkalinity, calcium hardness, magnesium hardness, total hardness, and permanent hardness. Explanations of these definitions and other expressions are provided in the Appendix.Determination of alkalinity during the photometric part is carried out in a separate acid-base titration before the complexometric titration of calcium and magnesium in water. Permanent hardness can be calculated from these values. The determination of calcium and magnesium in beverages (fruit and vegetable juices, wine) is also described.The photometric part includes the determinations of total and calcium hardness and thereby indirectly magnesium hardness using Eriochrome Black T and calconcarboxylic acid as indicators (in accordance with DIN 38406-3).
- AB-129Potentiometric determination of orthophosphates, metaphosphates, and polyphosphates
After acid digestion, the sample solution is neutralized with sodium hydroxide to form sodium dihydrogen phosphate. An excess of lanthanum nitrate is added and the released nitric acid is then titrated with sodium hydroxide solution.NaH2PO4 + La(NO3)3 → LaPO4 + 2 HNO3 + NaNO3This determination method is suitable for higher phosphate concentrations.
- AB-130Chloride titrations with potentiometric indication
Potentiometric titration is an accurate method for determining chloride content. For detailed instructions and troubleshooting tips, download our Application Bulletin.
- AB-135Potentiometric determination of hydrogen sulfide, carbonyl sulfide, and mercaptans in petroleum products
This Bulletin describes the potentiometric determination of hydrogen sulfide, carbonyl sulfide, and mercaptans in gaseous and liquid products of the oil industry (natural gas, liquefied petroleum gas, used absorption solutions, distillate fuels, aviation gasoline, gasoline, kerosene, etc.). The samples are titrated with alcoholic silver nitrate solution using the Ag Titrode.