Application Finder
- 8.000.6022Automated preparation of surrogate mixtures for the determination of octane and cetane numbers
Commercially available fuels are complex mixtures of hundreds of different hydrocarbons. For the calibration of the test engines or advanced experimental and computational research they are modeled by means of multicomponent surrogate mixtures that adequately represent the desired physical and chemical characteristics. By definition, every octane and cetane number corresponds to a specific mixing ratio of primary reference fuels (PRFs). Based on this information, the tiamoTM controlled automatic dosing device prepares the surrogate mixtures. The setup drastically minimizes time-consuming and error-prone manual preparation steps and the contact with hazardous solvents. Additionally, precise and accurate results are displayed on customizable reports that fully comply with all current GLP and GMP requirements.
- 8.000.6066Determination of the total acid number (TAN) using thermometric titration
The thermometric titration method presented here permits a simple and direct determination of the total acid number (TAN) in petroleum products. It is an invaluable alternative to current manual and potentiometric methods. Thermometric titration uses a maintenance-free temperature sensor that does not require rehydration and is free of fouling and matrix effects. The procedure requires minimal sample preparation. Results agree closely with those from the potentiometric titrimetric procedure according to ASTM D664, but the thermometric titration method is far superior in terms of reproducibility and speed of analysis, with determinations being complete in approximately one minute.
- AB-177Automatic determination of the bromine number and the bromine index in petroleum products
The bromine number and bromine index are important quality control parameters for the determination of aliphatic C=Cdouble bonds in petroleum products. Both indices provide information on the content of substances that react withbromine. The difference between the two indices is that the bromine number indicates the consumption of bromine in gfor 100 g sample and the bromine index in mg for 100 g sample.This Application Bulletin describes the determination of the bromine number according to ASTM D1159, ISO 3839, BS2000-130, IP 130, GB/T 11135 and DIN-51774-1. The bromine index determination for aliphatic hydrocarbons is described according to ASTM D2710, IP 299, GB/T 11136 and DIN 51774-2. For aromatic hydrocarbons the determination of the bromine index is described according to ASTM D5776 and SH/T 1767. UOP 304 is not recommended for the determination of the bromine number or bromine index because its titration solvent contains mercuric chloride.
- AB-209Water in insulating oils, hydrocarbons, and their products – Accurate and reliable determination by Karl Fischer titration
Only coulometric Karl Fischer titration can determine low water contents with sufficient accuracy.This Application Bulletin describes the direct determination according to ASTM D6304, ASTM E1064, ASTM D1533, ASTM D3401, ASTM D4928, EN IEC 60814, EN ISO 12937, ISO 10337, DIN 51777, and GB/T 11146. The oven technique is described according to ASTM D6304, EN IEC 60814, and DIN 51777.
- AB-280Automatic Karl Fischer water content determination with the 874 Oven Sample Processor
Generally speaking, the gas extraction or oven method can be used for all samples which release their water when they are heated up. The oven method is indispensable in cases in which the direct volumetric or coulometric Karl Fischer titration is not possible, either because the sample contains disruptive components or because the consistency of the sample makes it very difficult or even impossible to transfer it into the titration vessel.The present Application Bulletin describes automatic water content determination with the aid of the oven technique and coulometric KF titration, using samples from the food, plastic, pharmaceutical and petrochemical industry.
- AB-404Total acid number titration of petroleum products
The determination of the acid number plays a significant role in the analysis of petroleum products. This is manifested in the numerous standard procedures in use over the world (internal specifications of multinational companies, national and international specifications of ASTM, DIN, IP, ISO, etc.). These procedures differ mainly in the composition of the used solvents and titrants.This bulletin describes the determination of the acid number in petroleum products by applying different types of titration.The potentiometric determination is described according to ASTM D664, the photometric according to ASTM D974 and the thermometric titration according to ASTM D8045.
- AB-427Acid number in petroleum products with thermometric titration
This Application Bulletin describes the determination of the total acid number in various oil samples by catalytic thermometric titration as per ASTM D8045.
- AN-CIC-001Halogens in high-viscosity oils using Combustion IC
Determination of chloride and sulfate (non-quantified) in a high-viscosity oil sample using combustion digestion and subsequent anion chromatography with conductivity detection following sequential suppression.Keyword: pyrohydrolysis
- AN-CIC-014Chloride traces in the wax fraction of crude oil distillation using Metrohm Combustion IC
Paraffin and lubricating oils are yielded from the wax fraction of raw oil distillation. The chloride content of both should be low. This Application Note describes chloride determination after inline combustion. Although it does not happen in this application, this method can also be used to quantify the sulfur content.Keyword: pyrohydrolysis
- AN-H-001Determination of TAN in oils
Determination of Total Acid Number (TAN) values in mineral oils and similar fluids.
- AN-H-024Determination of tar acids (phenolics) in tar products
Determination of tar acids in coal tar products. This procedure may also be applied to the determination of a range of weakly acidic organic compounds such as carboxylic acids, hydroxy acids, phenols, phenolic acids, keto-enols, imides, and aromatic nitro compounds.11 Vaughan, G. A. Thermometric and Enthalpimetric Titrimetry. Van Nostrand Reinhold Co. Ltd (1973)
- AN-H-064Total base number (TBN) in used motor oils
The determination of the total base number (TBN) in motor oils is accomplished by means of titration with a standard solution made up of trifluoromethanesulfonic acid in glacial acetic acid and isobutyl vinyl ether as reagent for improved end point identification.
- AN-H-141Acid number in crude oil and gas oil according to ASTM D8045
Thermometric titration can determine the total acid number (TAN) of various crude oil products according to ASTM D8045 without requiring any sensor maintenance.
- AN-K-012Water in turbine oil
The water content of turbine oil is determined according to Karl Fischer. Because of the low water content of the sample, coulometric titration is used.
- AN-K-047Determination of the water content in transformer oil with 885 Compact Oven Sample Changer and 899 Coulometer
This Application Note describes the determination of the water content in transformer oil using the oven technique.
- AN-K-067Determination of the bromine index of aromatic hydrocarbons by coulometric titration according to ASTM D1492
The bromine index indicates the degree of unsaturation and relies on the simple addition of bromine to the double bond of alkenes. One mole of bromine is consumed for each mol of carbon-carbon double bond. The bromine index indicates the olefin content in aromatic hydrocarbons. This Application Note describes the determination by coulometric titration according to ASTM D1492.
- AN-K-070Water in petroleum products
Moisture in petroleum products causes several issues: corrosion and wear in pipelines and storage tanks, an increase in debris load resulting in diminished lubrication, blocked filters, or even harmful bacterial growth. As a result, increased water content can lead to infrastructure damage, higher maintenance costs, or even unwanted downtimes.Coulometric Karl Fischer titration is the method of choice for low water content in petroleum products. Using a Karl Fischer oven to vaporize the water present in the sample prior to titration not only greatly reduces matrix interferences, it can also be fully automated. This allows a reliable and cost-efficient analysis of the water content according to ASTM D6304 (Procedure B) in products such as diesel, hydraulic oil, lubricant, additive, turbine oil, and base oil.
- AN-NIR-025Real-time inline predictions of jet fuel properties by NIRS
This Application Note describes the determination of various indices (mainly with ASTM and ISO conformance) for the characterization of kerosene as aviation turbine fuel using near-infrared spectroscopy. The following parameters were determined with the aid of an NIRS XDS Process Analyzer: degree of density in accordance with the American Petroleum Institute (API), aromatics content, Cetane Index, distillation characteristics pursuant to ASTM D86, flash point, freezing point, viscosity and hydrogen content. All of these parameters are determined quickly and easily with just a single measurement.
- AN-PAN-1037Online thermometric titration of acid number (AN) in oils (ASTM D8045)
Metrohm has partnered with industry leaders to develop an alternative standard for the measurement of acid number (AN) in crude oil and petroleum products to overcome shortcomings in the current method (ASTM D664). This new standard method (ASTM D8045) describes the use of thermometric catalytic titration for this analysis. Results agree closely with those from ASTM D664, but the thermometric catalytic titration method is far superior in terms of reproducibility and speed of analysis, with determinations being complete in one minute.Solvent usage is much less compared to older methods, saving on waste disposal cost. Comparison studies show very close data correlation between ASTM D8045 and traditional potentiometric AN titration methods making implementation into a refinery with historic data practical.
- AN-PAN-1047Monitoring water content in refined products inline with NIR spectroscopy
A safer way to monitor moisture content in crude distillation unit overhead fractions is with inline near-infrared spectroscopy using the 2060 The NIR-Ex Analyzer.
- AN-R-018Determination of the oxidation stability of motor oil
Motor oils are exposed to high shear forces and temperatures while the motor is running. Mechanical abrasions set iron and copper free, which act as catalysts for oxidation. All of this decreases the durability of motor oils. The oxidation stability with iron and copper catalysts can give an approximate indication for the shelf life. A reproducible and accurate determination of the oxidation stability using the 892 Professional Rancimat can be realized.
- AN-S-040Five anions in cutting oil emulsions using dialysis for sample preparation
Determination of chloride, nitrite, nitrate, phosphate, and sulfate in cutting oil emulsion using anion chromatography with conductivity detection after chemical suppression and dialysis for sample preparation.
- AN-S-268Halogens in petroleum coke after microwave combustion
Determination of fluoride, chloride, bromide, and iodide in petroleum coke after microwave combustion using anion chromatography with conductivity detection after sequential suppression.
- AN-T-028Hydrogen sulfide and mercaptans in petroleum products
Simultaneous determination of hydrogen sulfide and mercaptans in petroleum products by potentiometric titration with silver nitrate using the Ag-Titrode.
- AN-T-091Fully automatic determination of total content of Ba, Ca, Mg, Pb and Zn in unused lubricating oils
This Application Note describes the determination of total content of Ba, Ca, Mg, Pb and Zn in unused lubricating oil by means of the Optrode (610 nm). An excess of EDTA is first added to the metals. Afterwards, the excess EDTA is titrated back with magnesium chloride solution up to the end point of the indicator Eriochrome Black T.
- AN-T-092Acid number in insulating, transformer and turbine oils – Use of a photometric sensor increases precision and reliability for the determination according to ASTM D974
The acid number (AN) of insulating, transformer, and turbine oils is crucial to ensure safe operation, operating equipment control, and corrosion prevention. These oils generally have low AN specifications and their AN determination by manual color-indicator titration is difficult, especially when analyzing colored samples.Using a Titrator with a photometric sensor to detect the end point ensures that the titrations are always carried out under the same conditions. This greatly increases the precision and reliability of the results, which in turn results in improved monitoring for your operations.
- AN-T-093Total base number in used engine oil – Fully automatic photometric determination increases reliability of results
Basic additives are added to petroleum products to inhibit corrosion as they have a neutralizing effect on acidic compounds, which are formed as a result of degradation processes. Total base number (TBN) indicates the amount of basic additives present and thus can be used as a measure for the degradation of the petroleum product.Using an automated titration system with a photometric sensor to detect the end point ensures that the titrations are always carried out under the same conditions. This improves the precision and reliability of the results.This Application Notes describes the fully automated photometric determination of TBN in used engine oil using the Metrohm Optrode for the indication of the methyl orange endpoint (at 520 nm).
- AN-T-095Automated mixing of a suspension and a solvent using a 50 mL dosing unit
Automated mixing of a suspension and a solvent in a 50 mL dosing unit can be used to add a well-defined amount of a suspension-solvent mixture to a sample solution without clogging the dosing unit and tubing by the undiluted suspension.The method is explained by means of the TAN determination of a petroleum sample using thermometric titration. For a better endpoint recognition, small amounts of a paraformaldehyde-solvent suspension are added (catalyzed endpoint thermometric titration).
- AN-T-096Acid number in lubricants with potentiometric titration
Fresh as well as used petroleum products may contain acidic components as additives or degradation products. The acid number (AN) is a measure for the relative amount of acids present expressed as mg KOH per g sample. Moreover, AN is used as a quality parameter of lubricating oils both for assessing the quality of new formulations and as an indicator for the degradation of such formulations during service. The use of a pH electrode suitable for non-aqueous titrations ensures the reliable determination of the equivalence point. A flexible sleeve diaphragm facilitates its cleaning especially after use in heavily contaminated samples, such as in used engine oils. Using the correct electrode greatly increases the precision and reliability of the results. This Application Note describes the potentiometric determination of the acid number according to ASTM D664 and IP 177 using the pH electrode Solvotrode easyClean.
- AN-T-097Base number in petroleum products with potentiometric titration
Basic chemicals are added to petroleum products to prevent corrosion as they neutralize acidic components that form during the use and aging of these products. The base number (BN) gives an indication regarding the amount of these basic additives present, and it can be used as a measure for the degradation of the petroleum product.This Application Note describes the potentiometric determination of the base number according to ISO 3771, ASTM D2896, and IP 276 using the Metrohm Solvotrode easyClean and a fully automated OMNIS system.
- AN-T-098Total base number according to IP test method 400
This Application Note describes the conductometric determination of the total base number in engine oil according to IP 400.
- AN-T-179Fully automated determination of TAN/TBN according to ASTM D664 and ASTM D2896
Fully automated determination of the total acid number and total base number in engine oils according to ASTM D664 and ASTM D2896 is possible with the OMNIS Titrator.
- AN-T-180Determination of the acid number and base number in used motor oil by differential amplification
For titrations in low conducting media (e.g., non-aqueous titrations) the potentiometric indication can be disturbed by interfering signals. When differential amplification is used, these signals are measured by both the measuring electrode and the reference electrode and thus neutralized. It is therefore possible to obtain smoother titration curves and more reproducible results.This Application Note describes the potentiometric determination of the acid number and base number in used motor oil by the differential amplification using a fully automated OMNIS system.
- AN-T-240Total acid number with conductometric titration
The total acid number (TAN) is an important parameter for assessing the acidity of oils and fuels. This Application Note determines TAN using conductometric titration.
- WP-008Coupling of ion chromatography and plasma mass spectrometry
The coupling of ion chromatography and inductively coupled plasma mass spectrometry (ICP/MS) leads to a high-performance measurement system that masters several particularly challenging analyses. It enables for example reliable determination of element compositions, oxidation states and chemical bonds. This information is used, for example, for assessing the toxicity of medications, environmental and water samples as well as foods and beverages.
- WP-012Corrosion control: Thermometric TAN analysis in oil & refinery distillation fractions
Many refiners look at discounted opportunity crudes as a means to improve their margin spread. The varieties of these cheap crude oils on the market are growing in number, but they have hidden risks for the purchaser caused by factors such as high naphthenic acid and sulfur content. Sulfur compounds and naphthenic acids are among the substances that contribute to the corrosive nature of crude oils and petroleum products. This is why the risk of corrosion is increased when processing crude oils with high naphthenic acid and sulfur content. The refiner must balance the cost benefit versus the risk and the cost of corrosion control when processing these crudes. A reliable acid number determination is a crucial part of corrosion control. Guest authors Bert Thakkar, Bryce McGarvey, and Colette McGarvey of Imperial Oil and Larry Tucker and Lori Carey of Metrohm USA were involved in the development of the new ASTM Method D8045 for acid number determination. Here, they report on the method and how it came to be.
- WP-055Corrosion Best Practice – Creating Pipe-flow Conditions Using a Rotating Cylinder Electrode
Electrochemical measurements utilizing a rotating cylinder electrode (RCE) are widely used in industrial corrosion applications when simulation of realistic pipe conditions are necessary in a lab environment. This white paper allows further insight into the particularities and parameters which govern the electrochemical measurements, in particular measurements performed in turbulent flow conditions, and shows a complete picture of the best practice use of this technique. The annexes provide an overview and short explanation of the parameters and laws specific to the fluid behavior in electrochemical cells with RCE.