Application Finder
- 410000006-BLow-frequency Raman spectroscopy
Raman spectroscopy is an advantageous analytical tool that allows for the measurement of molecular structure and identifying chemical composition of materials based on the rotational and vibrational modes of a molecule. With advanced technology and an optimized optical design, the B&W Tek BAC102 series E-grade probe can access lower frequency modes down to 65 cm-1, providing key information for applications in protein characterization, polymorph detection, and identification, along with material phase and structure determination.
- 8.000.6104USP Monograph Modernization Initiative: Chemical Medicines Assay by Potentiometric Titration
This poster presented jointly with USP at AAPS meeting shows the new potentiometric titration assay method for potassium bicarbonate and potassium carbonate assay which offers selectivity and fulfills all USP method validation requirements as per USP General Chapter < 1225>. Potentiometric titration based assay determination is faster and easy to use compared to the chromatographic techniques and can be easily automated to fulfill high throughput needs. Autotitration combined with appropriate equivalence point detection methods not only eliminates manual errors, but fulfills data integrity and 21 CFR 11 requirements, which makes the pharmaceutical QA/QC workflow easier.
- AB-177Automatic determination of the bromine number and the bromine index in petroleum products
The bromine number and bromine index are important quality control parameters for the determination of aliphatic C=Cdouble bonds in petroleum products. Both indices provide information on the content of substances that react withbromine. The difference between the two indices is that the bromine number indicates the consumption of bromine in gfor 100 g sample and the bromine index in mg for 100 g sample.This Application Bulletin describes the determination of the bromine number according to ASTM D1159, ISO 3839, BS2000-130, IP 130, GB/T 11135 and DIN-51774-1. The bromine index determination for aliphatic hydrocarbons is described according to ASTM D2710, IP 299, GB/T 11136 and DIN 51774-2. For aromatic hydrocarbons the determination of the bromine index is described according to ASTM D5776 and SH/T 1767. UOP 304 is not recommended for the determination of the bromine number or bromine index because its titration solvent contains mercuric chloride.
- AB-209Water in insulating oils, hydrocarbons, and their products – Accurate and reliable determination by Karl Fischer titration
Only coulometric Karl Fischer titration can determine low water contents with sufficient accuracy.This Application Bulletin describes the direct determination according to ASTM D6304, ASTM E1064, ASTM D1533, ASTM D3401, ASTM D4928, EN IEC 60814, EN ISO 12937, ISO 10337, DIN 51777, and GB/T 11146. The oven technique is described according to ASTM D6304, EN IEC 60814, and DIN 51777.
- AB-233Potentiometric determination of anionic and cationic surfactants with surfactant electrodes
Anionic surfactants can be titrated with cationic surfactants and vice-versa. The Bulletin describes a multitude of substances that can be determined in this fashion and specifies the respective working conditions and parameters. In contrast to the classic two-phase titration in accordance with Epton, the titration with the anionic and cationic surfactants electrodes can be performed without chloroform. Furthermore, the equivalence point of the titration is difficult to determine in some cases with the Epton method and the titration cannot be automated.In many cases, a surfactant ISE is a remedy that is both environmentally friendly and suitable here. It was developed specially for application with potentiometrically indicated surfactant determinations.
- AB-340Bromine index (BI) by coulometric titration
This bulletin describes a procedure to determine the bromine index (BI) using coulometric titration. The bromine index is the fraction of reactive unsaturated compounds (mostly C=C double bonds) in hydrocarbons encountered in the petrochemical industry. The double bonds are split with the attachment addition of bromine.
- AB-405Total base number titration of petroleum products
This Application Bulletin shows the determination of the total base number in petroleum products by applying different titration types according to various standards.
- AB-443Determination of Glycerin Purity by Potentiometric Titration
This method is applicable to all samples containing glycerin in the absence of other triols or other compounds that react with periodate to produce acidic products. Glycerin may be determined in the presence of glycols. A periodate solution reacts slowly with diols and triols in acidic aqueous media at room temperature. A quantitative amount of formic acid is generated from the reaction with glycerin (a triol). The reaction with diols produces neutral aldehydes. The amount of formic acid generated by this reaction is determined by titration against sodium hydroxide.
- AN-C-062Five cations including iron in monoethylene glycol (MEG)
Determination of sodium, potassium, iron(II), magnesium, and calcium in an extract of monoethylene glycol using cation chromatography with direct conductivity detection.
- AN-C-074Trimethylamine in hydrogen peroxide (H2O2)
Determination of trimethylamine in hydrogen peroxide (31 %) using cation chromatography with direct conductivity detection after inline matrix elimination, inline preconcentration, and inline calibration.
- AN-C-131Magnesium, cadmium, and iron in phosphoric acid
Determination of magnesium, cadmium, and iron in phosphoric acid using cation chromatography with direct conductivity detection.
- AN-C-191Sodium in lanthanum acetate
Lanthanum (La) is a transition metal which oxidizes easily in air to lanthanum(III) oxide. This oxide, as well as salts resulting from its dissolution in acid and recrystallization, is a component of different catalysts. Here, a lanthanum(III) acetate solution prepared by dissolution of lanthanum(III) oxide in acetic acid, has to be tested for a sodium contamination. The high concentration of La3+ is complexed by the dipicolinic acid in the eluent and forms anionic complexes. These complexes are eluted in the front and therefore do not interfere with the sodium impurity as well as other cations such as ammonium and calcium.
- AN-CS-019Trace ammonium and trimethyl-amine in 30% hydrogen peroxide applying sequential suppression
Determination of trace levels of cations and amines in hydrogen peroxide is important in quality determination of high-grade semiconductor chemicals. In particular, some manufactures look for 1 ppb trimethylamine or less in hydrogen peroxide samples. Ion chromatography after MiPCT-ME* with conductivity detection after sequential cation suppression is applied.
- AN-H-015Determination of acetic anhydride in acylation mixtures
Determination of acetic anhydride in the presence of acetic acid in acylation mixtures.
- AN-H-101Determination of the water content of mineral acids
A sample of concentrated mineral acid is dissolved in anhydrous acetonitrile, and the water content titrated with a solution of TEOF in acetonitrile. The TEOF reacts exothermically with water in the presence of a strong acid (acting as a catalyst).
- AN-H-115Determination of hydrofluoric acid, ammonium fluoride, and maleic acid in acid cleaning solutions
A direct thermometric titration (TET) with 2 mol/L NaOH is used to determine the HF, NH4F, and maleic acid (C4H4O4) contents of acid cleaning solutions. Three endpoints (EPs) are obtained, which may be assigned as follows:EP1: C4H4O4 (pKa1 = 1.9), HF (pKa = 3.17)EP2: C4H4O4 (pKa2 = 6.07)EP2: NH4F (pKa = 8.2)The HF content is determined by subtracting the difference (EP2-EP1) from EP1.
- AN-H-116Determination of sulfate in phosphoric acid through the standard addition of sulfuric acid
This Application Note supplements AN-H-003 with the treatment of the standard addition of sulfate as sulfuric acid. This technique may be contemplated when either sulfate levels are too low for a satisfactory direct titration, or when the sample matrix hinders endpoint detection, leading to poor precision and accuracy.
- AN-K-002Water in methyl ethyl ketone peroxide (butanone peroxide)
The water content of methyl ethyl ketone peroxide is determined according to Karl Fischer using two-component reagents in order to prevent unwanted side reactions. (Separate solvent is used to ensure a high excess of sulphur dioxide and amine in the titration vessel.)
- AN-K-003Water in ammonium and potassium peroxodisulfate (persulfates)
The water content of ammonium and potassium peroxodisulphate is determined according to Karl Fischer using two-component reagents. To prevent unwanted side reactions the determinations are carried out at -20 °C. Because the potassium salt is insoluble in the solvent, a high-frequency homogenizer is used to disintegrate the salt particles.
- AN-K-018Water in cyclopropyl methyl ketone
The water content of cyclopropyl methyl ketone is determined according to Karl Fischer by coulometric titration using special reagents for aldehydes and ketones.
- AN-K-031Water in 2-methyl-1,3-butadiene and 2,5-norbornadiene
The water content of 2-methyl-1,3-butadiene and 2,5-norbornadiene is determined according to Karl Fischer using a special solvent mixture to prevent unwanted side reactions.
- AN-K-032Water in acetophenone and benzophenone
The water content of acetophenone and benzophenone is determined according to Karl Fischer using special KF reagents for ketones/aldehydes to prevent unwanted side reactions.
- AN-K-033Water in piperidine and piperazine
The water content of piperidine and piperazine is determined according to Karl Fischer using a buffered solvent mixture.
- AN-K-041Water in liquid ammonia
Determination of the water content of liquid ammonia according to Karl Fischer after absorption of the water in ethylene glycol.
- AN-K-043Water in aniline
The water content of aniline is determined according to Karl Fischer in buffered solvent.
- AN-K-046Water in calcium carbonate (chalk, lime)
The water content in Ca carbonate is determined by volumetric Karl Fischer titration.
- AN-N-001Nitrate and perchlorate in hydrochloric acid eluate
Determination of NO3- and ClO4- in the presence of a large excess of HCl using anion chromatography with direct conductivity detection (using time program for full scale change after 18 min).
- AN-N-009Carbonate in an amine solution
Determination of carbonate in a solution of methyl-monoethanol-amine with anion chromatography with direct conductivity detection.
- AN-N-011Chloride, bromide, and iodide in alkaline combustion solutions
Determination of chloride, bromide, and iodide in alkaline combustion solutions using anion chromatography with direct conductivity detection.
- AN-N-022Traces of iodide in hydrochloric acid (25%) using amperometric detection
Determination of traces of iodide in HCl (25%) using anion chromatography with amperometric detection at a silver electrode.
- AN-N-028Traces of bromide in hydrochloric acid (32%) using amperometric detection
Determination of traces of bromide in HCl (32%) using anion chromatography with amperometric detection at the silver electrode.
- AN-N-038Traces of iodide in acetic acid using amperometric detection
Determination of traces of iodide in acetic acid using anion chromatography with amperometric detection at the carbon paste electrode.
- AN-O-045Organic acids in monoethylene glycol by ion-exclusion chromatography with inverse suppression
Monoethylene glycol (MEG) is used to remove water from natural gas before further processing. Due to high temperatures applied, glycol degradation to glycolic, formic, and acetic acid may occur. These reactions are unwanted as the emerging acids are corrosive. The determination of the organic acids is achieved by ion-exclusion chromatography with conductivity detection after inverse suppression.
- AN-RS-013Determination of Container Contents
Identification of unknown materials in the field can be a complicated affair, especially in critical situations, where speed, safety, and ease-of-operation are essential. Mira DS, Metrohm Raman’s handheld Raman analyzer, and the intelligent Universal Attachment (iUA) give the user automated Content ID capabilities. Content ID achieves through container identification of unknown materials quickly, easily, and safely.
- AN-RS-034Orbital Raster Scan (ORS™)
This application note presents the Orbital Raster Scan (ORS) technology from Metrohm Raman to overcome low resolution, poor sensitivity, and sample degradation while still interrogating a large sample area.
- AN-RS-037A Deeper Look at 785 nm Raman
Signal-to-noise ratio, spectrograph design, resolution of MIRA handheld Raman analyzers.
- AN-S-006Hypophosphite, phosphate, and organic acids in ethylene glycol
Determination of hypophosphite, formate, phosphate, adipate, p-nitrobenzoate, and sebacate in ethylene glycol using anion chromatography with conductivity detection after chemical suppression.
- AN-S-011Phosphate and tetrafluoroborate in 2% hydrofluoric acid
Determination of phosphate and tetrafluoroborate in 2% HF using anion chromatography with conductivity detection after chemical suppression.
- AN-S-050Chloride, nitrate, and sulfate in methanol
Determination of chloride, nitrate, and sulfate in methanol using anion chromatography with conductivity detection after chemical suppression.
- AN-S-053Four anions in boric acid
Determination of fluoride, chloride, phosphate, and sulfate in boric acid using anion chromatography with conductivity detection after chemical suppression.
- AN-S-081Acetate, chloride, nitrate, and sulfate in aluminum oxide
Determination of acetate, chloride, nitrate, and sulfate in aluminum oxide using anion chromatography with conductivity detection after chemical suppression.
- AN-S-089Acetate and dichloroacetate in monochloroacetic acid
Determination of acetate and dichloroacetate in chloroacetic acid using anion chromatography with conductivity detection after chemical suppression.
- AN-S-114Sulfate in methanesulfonic acid
Determination of sulfate in methansulfonic acid (70%) using anion chromatography with conductivity detection after chemical suppression.
- AN-S-117Chloride, nitrate, and sulfate in sodium thiocyanate
Determination of chloride, nitrate, and sulfate in sodium thiocyanate using anion chromatography with conductivity detection after chemical suppression.
- AN-S-118Formate, acetate, chloride, benzoate, and oxalate in phenolic extracts
Determination of formate, acetate, chloride, benzoate, and oxalate in phenolic extracts using anion chromatography with conductivity detection after chemical suppression.
- AN-S-136Adipic and phthalic acid in a digestion solution
Determination of adipic acid and phthalic acid in an alkaline ester digestion solution using anion chromatography with conductivity detection after chemical suppression.
- AN-S-145Chloride and sulfate in hypophosphoric acid
Determination of chloride and sulfate in hypophosphoric acid using anion chromatography with conductivity detection after chemical suppression.
- AN-S-153Chloride in 65% nitric acid using column switching
Determination of chloride in concentrated nitric acid using anion chromatography with conductivity detection and chemical suppression.
- AN-S-181Trace determination of chloride in quaternary ammonium hydroxide using inline cation exchange
Determination of traces of chloride in a quaternary ammonium hydroxide using anion chromatography with conductivity detection after chemical suppression and inline cation exchange to remove the matrix cations.
- AN-S-184Fluoride, chloride, and sulfate in absorption solutions containing H2O2
Determination of fluoride, chloride, and sulfate in an absorption solution containing H2O2 using anion chromatography with conductivity detection after chemical suppression.