Application Finder
- 8.000.6041Simultaneous determination of fluoride species plus acid anions in etching baths by ion chromatography with dual detection
This poster presents a straightforward ion chromatographic determination of HF, HNO3, short-chain organic acids and H2SiF6 in etching bath samples. Standard ions such as fluoride, nitrate, acetate and sulfate are determined via suppressed conductivity detection while dissolved silicate is spectrophotometrically detected in the same run after downstream post-column reaction (PCR) as molybdosilicic acid. Analytical results of several commercial HF-HNO3-H2SiF6 mixtures obtained by ion chromatography (IC) and titration showed good agreement, which confirms the applicability of the presented «dual» detection IC method for controlling the composition of acidic texturing baths.
- AB-011Determination of zinc by bi-amperometric titration with potassium hexacyanoferrate(II)
Zinc, such as that occurring as a constituent of light alloys, can be determined by precipitation titration with potentiometric endpoint indication. The determination of zinc in the presence of cadmium is also possible.2 K4[Fe(CN)6] + 3 ZnCl2 → K2Zn3[Fe(CN)6]2 + 6 KCl
- AB-014Determination of nickel by potentiometric titration
A potentiometric method for the determination of nickel in gold and silver electroplating baths is described. The titration is carried out with KCN. Gold and silver are removed before titration by a reduction process. It is also possible to determine nickel in steel alloys, etc. (see the literature reference).Ni2+ + 4 KCN + 2NH4+ → (NH4)2[Ni(CN)4] + 4 K+
- AB-037Determination of chromium in iron and steel
Two methods are described for the determination of chromium: a biamperometric titration and a polarographic analysis.
- AB-061Potentiometric determination of silver – Accurate determination according to EN ISO and GB/T standards
Silver is an important metal not only in jewelry and silverware but also in electrical conductors and contacts. The knowledge of the exact silver content in fine silver and silver alloys ensures that quality standards for jewelry and silverware are met. As for the plating industry, the knowledge of the amount of silver in silver plating baths helps to run the bath efficiently.While X-ray fluorescence (XRF) is a fast alternative to determine the silver content in fine silver and silver alloys, it can only determine the silver content of the outermost sections of the metal. In contrast, titration offers a more comprehensive solution considering the whole sample, thus preventing fraud by thick plating.This application bulletin describes the potentiometric determination of silver in fine silver and silver alloys accordingto EN ISO 11427, ISO 13756, GB/T 17823, and GB/T 18996 as well as in silver plating baths by a titration with potassium bromide or potassium chloride, respectively
- AB-089Potentiometric analysis of anodizing baths
This Bulletin describes potentiometric titration methods for checking sulfuric acid and chromic acid anodizing baths. In addition to the main components aluminum, sulfuric acid, and chromic acid, chloride, oxalic acid, and sulfate are determined.
- AB-090Potentiometric analysis of tin plating baths
Potentiometric titration methods for the analysis of acid and alkaline tin plating baths are presented. The following methods are described: tin(II) / tin(IV) / total tin, free fluoroboric acid, or free sulfuric acid, chloride in acidic tin baths, free hydroxide, and carbonate in alkaline tin baths.
- AB-132Polarographic determination of molybdenum in strongly ferruginous materials
A method is described in this Bulletin that allows molybdenum to be determined in steel and other materials containing a high iron concentration. Mo(VI) is determined at the dropping mercury electrode by catalytic polarography. The determination limit is approx. 10 μg/L Mo(VI).
- AB-176Determination of lead and tin by anodic stripping voltammetry
In most electrolytes the peak potentials of lead and tin are so close together, that a voltammetric determination is impossible. Difficulties occur especially if one of the metals is present in excess.Method 1 describes the determination of Pb and Sn. Anodic stripping voltammetry (ASV) is used under addition of cetyltrimethylammonium bromide. This method is used when:• one is mainly interested in Pb• Pb is in excess• Sn/Pb ratio is not higher than 200:1According to method 1, Sn and Pb can be determined simultaneously if the difference in the concentrations is not too high and Cd is absent.Method 2 is applied when traces of Sn and Pb are found or interfering TI and/or Cd ions are present. This method also uses DPASV in an oxalate buffer with methylene blue addition.
- AB-181Automatic potentiometric titration of aluminum and magnesium in the same solution
Mixtures of aluminum and magnesium ions can be analyzed automatically using potentiometric titration. The excess DCTA is back-titrated with copper(II) sulfate solution after the addition of 1,2-diaminocyclohexanetetraacetic acid (DCTA) and complex formation. The ion-selective copper electrode is used here as the indicator electrode. First, the aluminum is determined in acidic solution and then the magnesium in alkali solution.
- AB-192Determination of thiourea in the lower mg/L and in the µg/L range by polarography and cathodic stripping voltammetry
Thiourea forms highly insoluble compounds with mercury. The resulting anodic waves are used for the polarographic determination of thiourea. For the analysis of very small quantities (µg/L), cathodic stripping voltammetry (CSV) is used. Differential Pulse measuring mode is used in both cases.
- AB-313Analysis of Bayer process liquors using thermometric titration
The determination of the total causticizer, sodium carbonate and aluminum oxide contents in (Bayer) process liquors can be accomplished with high precision and speed by using the 859 Titrotherm in a thermometric acid-base titration. A complete titration takes approximately 5 minutes.The procedure is an automated adaptation of the traditional Watts-Utley method, and is similar to the VanDalen-Ward thermometric titration method, but with the added advantage that the analysis can also be performed for the carbonate content of the liquor.
- AB-435Connection of the Eco Titrator to the PC
Eco Titrators provide the capability to send PC/LIMS reports directly to a PC. This feature is mainly used to transfer data to an external LIMS system or to simply store the data in a digitally on the PC. Additionally, it is possible to control the Eco Titrator by RS232 commands if the connection is set up according to the procedure described below.The data transfer from the Eco Titrator to a PC can be done by a software- or a hardware-based option. Additional accessories are needed for the hardware-based option whereas for the software-based option two additional softwares must be installed. Both solutions are described in this document.
- AB-444Installation instruction: MVA-24 – 884 Professional VA fully automated for CVS with 858 Professional Sample Processor and Dosino sample transfer
This Application Bulletin contains installation instructions for the MVA-24 CVS setup used to measure suppressors, brighteners, and levelers in plating solutions.
- AN-C-040Calcium and magnesium in rock extracts
Determination of calcium and magnesium in rock extracts using cation chromatography with direct conductivity detection.
- AN-CIC-028Fluorine and chlorine in iron ore by Combustion Ion Chromatography
Iron ore is an important resource for steel production. Its natural content of halogens is a quality characteristic due to the corrosiveness of the respective halogenides. Combustion IC applying the sacrificial vial technology is used for the analysis of fluorine and chlorine in ore. WO3 usually is added to improve the release of SO2 and therefore sulfur recovery. In this application, it also significantly improves the recovery of fluoride.
- AN-COR-004Corrosion part 4 – equivalent circuit models
Electrochemical impedance spectroscopy or EIS has been used effectively to measure the polarization resistance for corrosion systems and for the determination of corrosion mechanisms.
- AN-COR-008Stepwise dissolution measurement
In this Application Note, stepwise dissolution measurement (SDM) is applied to aluminum samples coated with different materials, in order to gain insights in corrosion protection. The combination of the Autolab PGSTAT204 with the 1 L Autolab corrosion cell and the NOVA software provides the suitable setup to perform SDM and other corrosion experiments.
- AN-COR-019Determining the corrosion rate with INTELLO
Tafel analysis is an important electrochemical technique used to understand reaction kinetics. By studying the Tafel slope, it reveals the rate-determining steps in electrode reactions, aiding fields like corrosion and fuel cell research. This method helps industries optimize processes and improve device performance by tailoring materials and conditions for greater efficiency.
- AN-CS-007Lithium in addition to other cations in seepage water from minerals through sequential suppression
With the advent of electric automobiles, the demand for lithium batteries and with it the demand for lithium material will increase sharply. Brine lakes and hard silicate minerals are numbered among the most important sources of lithium. This Application Note addresses cation determination in seepage water from lithium minerals. Alkali and earth alkali metals are separated in the lithium digestions on the Metrosep C Supp 1 - 250/4.0 column, with subsequent conductivity detection after sequential suppression.
- AN-EC-028Measuring hydrogen permeation according to ASTM G148
In this Application Note, hydrogen permeation experiments are conducted following the procedure described in the ASTM standard G148.
- AN-EC-032Hydrogen permeation with a single instrument according to ASTM G148
The Devanathan-Stachurski cell (or «H cell») is successfully used to evaluate the permeation of hydrogen through sheets or membranes. As small amounts of hydrogen pass through the sheet or membrane, a very sensitive potentiostat is required for its detection. A study of the hydrogen permeation properties of different iron sheets is discussed in this Application Note while taking the instrumental requirements into account.
- AN-EC-036Ohmic iR drop Part 3 – Measurement with EIS
This Application Note explains manual and automated iR drop correction with electrochemical impedance spectroscopy and cautions against using less accurate methods.
- AN-EIS-001Electrochemical impedance Spectroscopy (EIS) Part 1 – Basic Principles
Electrochemical impedance spectroscopy (EIS) is a widely used multidisciplinary technique for characterizing the behavior of complex electrochemical systems. EIS is employed in the study of a range of complex systems including batteries, catalysis, and corrosion processes. This Application Note focuses on the basic principles of EIS measurements.
- AN-EIS-002Electrochemical Impedance Spectroscopy (EIS) Part 2 – Experimental Setup
A typical electrochemical impedance spectroscopy (EIS) experimental setup consists of an electrochemical cell, a potentiostat/galvanostat, and a frequency response analyzer (FRA). This Application Note introduces common EIS experimental setups as well as details of the main experimental parameters.
- AN-EIS-003Electrochemical Impedance Spectroscopy (EIS) Part 3 – Data Analysis
Here, the most common circuit elements for EIS are introduced which may be assembled in different configurations to obtain equivalent circuits used for data analysis.
- AN-EIS-004Electrochemical Impedance Spectroscopy (EIS) Part 4 – Equivalent Circuit Models
Explore how to construct simple and complex equivalent circuit models for fitting EIS data in this Application Note. Nyquist plots are shown for each example.
- AN-H-004Determination of fluoride by boric acid titration
This Application Note explains how fluoride determination in acid etching baths can be performed with thermometric titration.
- AN-H-005Determination of cuprous ions in the presence of ferrous ions
Determination of cuprous ions in the presence of ferrous ions in electrochemical copper leaching solutions.
- AN-H-021Determination of free acid in copper refining solutions
Determination of free acid in copper refining solutions.
- AN-H-023Determination of nickel by dimethylglyoxime titration
Determination of nickel in the absence of cobalt and other interferences.
- AN-H-026Determination of causticizer, carbonate and aluminum oxide in Bayer process liquor
This Application Note describes a method for the determination of causticizer, carbonate and aluminum oxide in used Bayer process liquors. The method is based on processes that were developed by Watts-Utley and VanDalen-Ward.
- AN-H-037Determination of phosphate in an acid etching mixture
Determination of phosphate content in an acid etching bath.
- AN-H-049Determination of nickel by titration with disodium dimethylglyoximate
Determination of nickel in solution by titration with standard disodium dimethylglyoximate.
- AN-H-053Determination of aluminum by fluoride titration
Determination of aluminum in acidic, basic, and neutral solutions; including aluminum chloride, aluminum chlorohydrate (also in anti-perspirant formulations), alum, etching solutions, and aluminate solutions.
- AN-H-070Determination of ferric and cupric Ions in copper refining solutions
Determination of Fe3+ and Cu2+ in copper refining solutions by thermometric titration. It was found that the conventional approach of masking Fe3+ to permit the iodometric determination of Cu2+ is not possible in some copper refining solutions.
- AN-H-087Determination of hydrofluoric acid by aluminum titration
Determination of hydrofluoric acid in mixed acid etchant solutions.
- AN-H-094Determination of boron in ores by fluoride titration
Determination of boron in ores of the element such as borax and ulexite.
- AN-H-098Determination of hydrofluoric acid in silicon etch solutions
This Application Note describes the determination of fluoride in silicon etch solutions with thermometric titration.
- AN-H-100Determination of total acids in highly acidic etch solutions
Determination of the total acids concentration in mixtures of nitric-hydrofluoric acid intended for etching silicon substrates.
- AN-H-114Determination of sulfuric acid, nitric acid, and hydrofluoric acid in etch solutions
Two separate titration sequences are required to analyze the mixture:- titration of the HF content with Al(NO3)3 (the «elpasolite» reaction)- titration of the H2SO4 with BaCl2 followed by titration with NaOH to determine the «total acids» contentThe HF, H2SO4, and «total acids» contents are converted to a HNO3 equivalent, with the HNO3 content found by subtracting the HF and H2SO4 from the «total acids» content.
- AN-H-115Determination of hydrofluoric acid, ammonium fluoride, and maleic acid in acid cleaning solutions
A direct thermometric titration (TET) with 2 mol/L NaOH is used to determine the HF, NH4F, and maleic acid (C4H4O4) contents of acid cleaning solutions. Three endpoints (EPs) are obtained, which may be assigned as follows:EP1: C4H4O4 (pKa1 = 1.9), HF (pKa = 3.17)EP2: C4H4O4 (pKa2 = 6.07)EP2: NH4F (pKa = 8.2)The HF content is determined by subtracting the difference (EP2-EP1) from EP1.
- AN-H-119Determination of ferric ion in acidic solutions
This Application Note deals with the determination of ferric ion in acidic and copper-free solutions using thermometric titration. The ferric ion is reduced by iodide. The released iodine reacts exothermically when titrated with thiosulfate solution. The endpoint is determined through temperature plotting by the temperature sensor Thermoprobe.
- AN-H-127Thermometric analysis of aluminum by back-titration
This Application Note describes the determination of aluminum in samples containing silicon dioxide using thermometric titration and EDTA as the titrant. Excess EDTA is titrated with a Cu2+ solution of known concentration. The initial, uncomplexed Cu2+ ions react immediately with the H2O2 present in the solution, leading to a recognizable sudden increase in temperature.
- AN-H-148Potassium in potash
Potash is commonly mined from ore, deposited after ancient inland oceans evaporated. The potassium salt is then purified in evaporation ponds. At the end of this process, the potash is typically obtained as potassium chloride. Potash is mainly used as fertilizer, providing potassium—an essential nutrient—to plants. Additionally, it is used in the chemical industry and to produce medicine. Potassium content in potash is typically determined by flame photometry (F-AES) or ICP-OES. However, these techniques have high investment and running costs. By applying the historically used gravimetric precipitation reaction as a thermometric titration, it becomes possible to rapidly and inexpensively determine the potassium content in potash within minutes.
- AN-NIR-117Analysis of moisture, ash, carbon, and volatile content in coal by NIRS
Conventional methods used to analyze moisture, ash, fixed carbon, and volatile content in coal samples, are time consuming and costly. Near-infrared (NIR) spectroscopy is excellently suited to determine all parameters simultaneously in less than one minute without any sample preparation.
- AN-PAN-1019Online analysis of acids and iron in pickling baths
Pickling baths are used in the galvanic industry to clean steel surfaces and prevent corrosion through passivation. Maintaining specific Fe2+/Fe3+ and free acid/total acid ratios is vital to ensure the baths' optimal performance, which directly impacts the final product quality and reduces production costs by minimizing reagent consumption. This application presents a method to regularly monitor the acid and iron composition in pickling baths online by using a process analyzer from Metrohm Process Analytics.
- AN-S-079Four anions in corrosion powder
Determination of fluoride, chloride, nitrate, and sulfate in corrosion powder using anion chromatography with conductivity detection after chemical suppression.
- AN-T-064Titanium and iron in mixtures
Simultaneous determination of titanium and iron by potentiometric titration with potassium dichromate using a platinum electrode. Before determination, Ti4+ and Fe3+ are reduced with Cr2+.
- AN-T-069Iron and nickel in binary mixtures
Determination of iron and nickel in binary mixtures by potentiometric titration with EDTA at different pH values using the Cu-ISE.
Did you know?
We developed the Rancimat method to reliably determine the oxidation stability of your products.
Show another