Приложения
- AB-073Polarographic analysis – half-wave potentials of organic substances
This Bulletin is a supplement to Application Bulletin no. 36 (Half-wave potentials of inorganic substances) in the sense that the half-wave potentials of 100 different organic substances are listed. At the same time the supporting electrolytes used and the limits of determination are given.The various substances are listed in alphabetical order. The most important polarographically active functional groups are taken into consideration. This means that substances for related structures can also be determined polarographically in the same or similar supporting electrolytes, although they may not appear in the list.Unless otherwise stated, the half-wave potentials refer to a temperature of 20 °C, and the potentials are given in volts, measured with a sat. KCI-Ag/AgCl electrode assembly.The determination limits give the smallest concentrations which can be measured without risking serious errors in the results. In all cases, the limit of detection lies below the limit of determination.
- AB-135Potentiometric determination of hydrogen sulfide, carbonyl sulfide, and mercaptans in petroleum products
This Bulletin describes the potentiometric determination of hydrogen sulfide, carbonyl sulfide, and mercaptans in gaseous and liquid products of the oil industry (natural gas, liquefied petroleum gas, used absorption solutions, distillate fuels, aviation gasoline, gasoline, kerosene, etc.). The samples are titrated with alcoholic silver nitrate solution using the Ag Titrode.
- AB-192Determination of thiourea in the lower mg/L and in the µg/L range by polarography and cathodic stripping voltammetry
Thiourea forms highly insoluble compounds with mercury. The resulting anodic waves are used for the polarographic determination of thiourea. For the analysis of very small quantities (µg/L), cathodic stripping voltammetry (CSV) is used. Differential Pulse measuring mode is used in both cases.
- AN-CIC-001Halogens in high-viscosity oils using Combustion IC
Determination of chloride and sulfate (non-quantified) in a high-viscosity oil sample using combustion digestion and subsequent anion chromatography with conductivity detection following sequential suppression.Keyword: pyrohydrolysis
- AN-CIC-002Halogens and sulfur in residual solvent using Combustion IC
Determination of fluoride, chloride, bromide and sulfate in residual solvent using combustion digestion as sample preparation and subsequent anion chromatography with conductivity detection following sequential suppression. The analysis is significant for use in dividing waste products into non-halogenated and halogenated solvents.Keyword: pyrohydrolysis
- AN-CIC-003Chlorine, bromine and sulfur in low-density polyethylene (ERM®-EC680k) using Combustion IC
The determination of halogens and sulfur in waste products is important. The inline combination of the Mitsubishi Combustion Module with the Metrohm IC is a suitable method for this type of samples. The recovery rates are analyzed with a certified reference material, e.g., a low-density polyethylene (LDPE).Keyword: pyrohydrolysis
- AN-CIC-004Total and leachable concentration of halogens and sulfur in latex gloves using Combustion Ion Chromatography and a leaching test
Latex gloves are used in clean room environments in order to prevent contaminations. The use of gloves that release corrosive halogenides or sulfate is forbidden in nuclear power plants. The total content of halogen and sulfur is determined by means of Combustion Ion Chromatography. An eluate test is carried out to check the elutable percentage of halogens and sulfate from gloves. Sample preparation is comprised of preconcentration and matrix elimination (MiPCT-ME), as described in AN-S-304.Keyword: pyrohydrolysis
- AN-CIC-006Recovery rates of chloride, bromide and sulfate in certified reference materials using Metrohm Combustion Ion Chromatography
Combustion Ion Chromatography combines pro-hydrolytic sample combustion and the absorption of emerging combustion gases in an oxidizing, aqueous solution that is then channeled to an ion chromatograph for the analysis of halogenides and sulfur (as sulfate). The combustion and analysis of the certified reference materials (ZRM) makes clear the reliability of Metrohm Combustion Ion Chromatography.Keyword: pyrohydrolysis
- AN-CIC-007Analysis of a standard mixed in liquid using Metrohm Combustion IC
This application describes the determination of fluoride, chloride, bromide and sulfur (as sulfate) in an ethanol standard solution with halo organic (4-halogen benzoic acids; F, Cl and Br) and sulfur organic compounds (3-(Cyclohexylamino)-1-propanesulfonic acid) by means of Metrohm Combustion Ion Chromatography with flame sensor and Inline Matrix Elimination.Keyword: pyrohydrolysis
- AN-CIC-009Chloride and sulfur in cyclohexane using Metrohm Combustion IC
Cyclohexane is an important organic solvent. Recycled cyclohexane must be tested for trace substances, e.g., chloride and sulfate. Metrohm Combustion Ion Chromatography with flame sensor and Inline Matrix Elimination is the method of choice.Keyword: pyrohydrolysis