

Application Bulletin 110/3 e

Determination of free cyanide by polarography

Summary

This Application Bulletin describes a polarographic method for the determination of cyanide that allows to determine free cyanide fast and accurately. The determination also succeeds in solutions containing sulfides, where other methods fail. Cyanide concentrations in the range $\beta(\text{CN}^-)$ = 0.01...10 mg/L cause no problems. Interference caused by anions and complexed cyanides has been investigated.

Instruments

VA instrument
capable of operating a Multi-Mode Electrode and
supporting differential pulse (DP) measuring mode

Electrodes

	WE	Multi-Mode Electrode pro	6.1246.120
		Mercury drop capillary	6.1226.030
	RE	Ag/AgCl reference electrode Ag/AgCl/KCl (3 mol/L) Electrolyte vessel Filled with c(KCl) = 3 mol/L	6.0728.x20 6.1245.010
		Timed With O(NOI)	
	ΑE	Pt rod electrode	6.0343.x00

Reagents

All of the used reagents must be of purest quality possible (for analysis or for trace analysis*).

- Potassium hydroxide, w(KOH) ≥ 85%, for analysis, CAS 1310-58-3
- Boric acid, H₃BO₃, for analysis, CAS 10043-35-3
- Potassium cyanide, KCN, for analysis, CAS 151-50-8
- Ultrapure water, resistivity >18 MΩ·cm (25 °C), type I grade (ASTM D1193)

Solutions

Supporting electrolyte	$c(H_3BO_3) = 0.2 \text{ mol/L}$
	c(KOH) = 0.17 mol/L
	pH 10.2
	Dissolve 11.2 g KOH in approx.
	800 mL ultrapure water. Add

12.4 g boric acid, adjust the pH		
value to 10.2 if necessary and		
make up to 1 L with ultrapure		
water.		

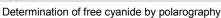
Standard solutions

Potassium hydroxide solution	c(KOH) = 0.01 mol/L Dissolve 0.65 g KOH in ultrapure water and make up to 1 L.
Cyanide stock standard solution	$\beta(CN^-)$ = 1 g/L Dissolve 0.2503 g KCN in c(KOH) = 0.01 mol/L and make up to 100 mL.
Cyanide standard solution	$\beta(CN^-)$ = 100 mg/L Additional standards can be prepared by dilution with c(KOH) = 0.01 mol/L.

Analysis

Measuring solution

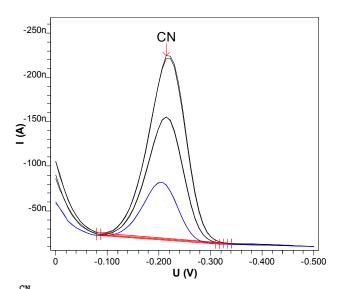
10 mL (diluted) sample solution

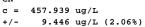

+ 10 mL supporting electrolyte

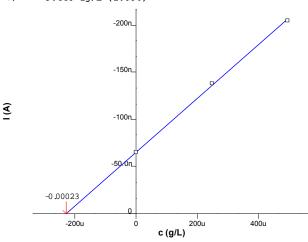
If cyanide is present in concentrations above the linear working range, the sample solution has to be diluted accordingly with ultrapure water.

The concentration is determined by standard addition.

Parameters


Voltammetric		
Electrode operating mode	DME	
Measuring mode	DP – Differential pulse	
Stirring rate	2000 min ⁻¹	
Equilibration time	5 s	
Sweep		
Start potential	0.0 V	
End potential	-0.5 V	
Potential step	0.008 V	
Potential step time	0.8 s	





Sweep rate	0.01 V/s
Pulse amplitude	0.05 V
Substance	
Name	Cyanide
Characteristic potential	-0.24 V

Example

Result

Sample	Waste water
Sample size	10.0 mL
β(CN ⁻)	458 μg/L

Comments

 Cyanide can be determined in the presence of a 1000fold excess of phosphate, nitrate and sulfate. A 50'000-

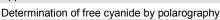
- fold excess of chloride does not interfere with the determination either.
- K₃[Fe(CN)₆], K₄[Fe(CN)₆] and K₂[Ni(CN)₄] do not affect
 the height of the cyanide peak; K[Zn(CN)₃] increases
 the peak height (decomposition of the complex);
 K[Cu(CN)₂] somewhat distorts the shape of the peak
 when present in tenfold excess.
- If the CN⁻ concentration in the sample is greater than 10 mg/L, a smaller sample size has to be used.
 Concentrations as low as β(CN⁻) = 0.01 mg/L can still be determined with a precision of ±10%.
- It is also possible to determine cyanide in the presence of sulfide (e.g. in waste water distillates).
- With the method described only free cyanide can be determined. For the determination of the total cyanide content the cyanide has to be separated by distillation, e.g. according to DIN 38405-13.
- The polarographic method for determining cyanide is quicker, sometimes more sensitive, and, above all, simpler than comparable methods. The times listed below for all the methods refer to a single determination (without standard solution).

Method	Duration
Titration $\beta(CN^-) = 1100 \text{ mg/L}$	530 min
Direct potentiometry with the ion-selective electrode $\beta(CN^-) = 0.2626$ mg/L	up to 45 min (depending on conc.)
Colorimetry (benzidine/pyridine method) $\beta(CN^-) = 0.0050.1 \text{ mg/L}$	approx. 15 min
Colorimetry (barbituric acid/pyridine method) $\beta(CN^-) = 0.0050.5 \text{ mg/L}$	approx. 40 min
Polarography $\beta(CN^-) = 0.0110 \text{ mg/L}$	approx. 5 min

References

D. R. Canterford
 Simultaneous determination of cyanide and sulfide with
 rapid direct current polarography
 Anal. Chem. 47 (1975) 88–92

Appendix


Initial purge time (s)

Report for the example determination of free cyanide in waste water

```
====== METROHM 797 VA COMPUTRACE (Version 1.0.0.1) (Serial No. 0) ========
Determination : 06261315_waste water.dth
                 : waste water
 Sample ID
 Creator method:
                                                                   Time:
                                      Date : 2001-06-26
                                                                          13:15:36
 Creator determ.:
                                                                   Time:
                                                                   Time: 16:08:59
Modified by
                                      Date : 2001-06-26
Method : AB110_Det of CN.mth
Title : Determination of free Cyanide
Remark1 : 10 mL electrolyte + 10 mL sample
Remark2 :
Sample amount : 10.000 mL
Cell volume : 20.000 mL
            : CN
 Substance
Conc.
Conc.dev.
                 : 228.970 ug/L
                     4.723 ug/L
4.579 ug
                                     (2.06%)
 Amount
               : 5.000 ug
Add.amount
                         I.mean Std.Dev. I.delta Comments
 1 - 1 -0.206
                 -65.1
                          -65.1
                                     0.119
                                                 0.0
       -0.206
-0.214
                 -65.0
                -138.0
                         -138.0
                                   0.085
                                               -73.0
       -0.214
                -138.1
       -0.214
                -206.1
                         -204.7
                                     1.966
                                               -66.7
 Substance
            Calibr.
                          Y.reg/offset
                                                Slope Mean deviat. Corr.Coeff.
              std.add.
                             -6.526e-008 -2.850e-004 1.802e-009
Final results
                                          +/- Res. dev.
                                                                 Comments
             ______
CN:
Cyanide
                   = 457.939 \text{ ug/L}
                                         9.446
                                                       2.063
```

Method print for the determination of free cyanide Method parameters Method : AB110_Det of CN.mth : Determination of free Cyanide : 10 mL electrolyte + 10 mL sample : Remark1 Remark2 : Standard addition Calibration : Batch Technique : 20.000 : 10.000 : waste water Cell volume (mL) Sample amount (mL) Sample ID Voltammetric parameters : DP - Differential Pulse : 10 mA : 100 nA Highest current range Lowest current range Electrode Stirrer speed (rpm) : 2000 No. of additions No. of replications Measure blank : No Addition purge time (s)

300

Sweep Equilibration time (s) Equilibration time (s)
Start potential (V)
End potential (V)
Voltage step (V)
Voltage step time (s)
Sweep rate (V/s)
Pulse amplitude (V)
Pulse time (s) 0.000 -0.500 0.008 0.010 Pulse time (s) 0.040 Cell off after measurement

Peak evaluation

Peak evaluation : Height
Minimum peak width (V.steps) : 5
Minimum peak height (A) : 1.000e-010
Smooth factor : 4

Smooth factor Reverse peaks Reverse sweep : No

Substances

CN : -0.240~V +/- 0.050 V Standard solution : 1 0.100 g/L Addition volume (mL) : 0.050

: Final result (CN) = (1e+0.06 / 1) * Mass.conc + 0 - 0Cyanide